ORIGINAL ARTICLE
Field evaluation of entomopathogenic fungi formulations against Rachiplusia nu (Lepidoptera: Noctuidae) in soybean crop
More details
Hide details
1
Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2022-08-04
Acceptance date: 2022-10-03
Online publication date: 2022-12-15
Corresponding author
Ana Clara Scorsetti
Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina
Journal of Plant Protection Research 2022;62(4):403-410
HIGHLIGHTS
- Beauveria bassiana strains were pathogenic toward Rachiplusia nu larvae in vitro
- Bioformulations were developed and proved to be effective under laboratory conditions
- Formulation 4 demonstrated to be effective to control R. nu larvae in the field
- Formulation 4 is a promising alternative to develop a commercial bioinsecticide
KEYWORDS
TOPICS
ABSTRACT
Rachiplusia nu (Lepidoptera: Noctuidae) is the main soybean plague in Argentina. The
main strategy employed to control this pest is chemical control, applying different chemical
groups regardless of their harmful effects on the environment and human health. Different
biological products using entomopathogenic fungi have been developed and are commer-
cially available to control different insect pests worldwide. The objective of this work was to
develop and apply, under field conditions, different fungal formulations using entomopath-
ogenic fungi to control R. nu larvae. The mortality percentages in bioassays of R. nu larvae
treated with different colonies of fungal entomopathogens ranged between 86.6 ± 8.4% for
Beauveria bassiana (LPSc 1098) and 56.6 ± 4.2% for Metarhizium anisopliae (LPSc 907).
Under laboratory conditions using fungal formulations of B. bassiana, the formulation 4
(LPSc 1086) exhibited the highest mortality percentage (100%), followed by formulation 5
(LPSc 1098), 97 ± 1.3%. Under field conditions, larval mortalities were 82.4 ± 5.56% for for-
mulation F4 and 61.8 ± 7.5% for formulation F5. The results obtained in this work indicate
that although a greater number of tests under field conditions with the fungal formulation
F4 are necessary, the results obtained in this work allow speculating that it is possible to use
this fungal formulation under field conditions to control R. nu.
FUNDING
This study was partially supported by Agencia Na-
cional de Promoción Científica y Tecnológica PICT
Start Up 2020-0008. Consejo Nacional de Investiga-
ciones Científicas y Tecnológicas (PIP 0018/ 0348) and
Universidad Nacional de La Plata (UNLP, 11/N 903).
RESPONSIBLE EDITOR
Chetan Keswani
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (42)
1.
Artigas J.N. 1994. Economic Entomology: Insects of Agricultural, Forestry, Medical and Veterinary Interest. Vol. 2. University of Concepcion, Uruguay.
2.
Ávila-Hernández J.G., Carrillo-Inungaray M.L., De la Cruz-Quiroz R., Wong-Paz J.E., Muñiz-Márquez D.B., Parra R.N., Aguilar C., Aguilar-Zárate P. 2020. Beauveria bassiana secondary metabolites: A review inside their production systems, biosynthesis, and bioactivities. Mexican Journal of Biotechnology 5 (4): 1–33. DOI:
https://doi.org/10.29267/mxjb.....
3.
Bansal R., Walia R., Bathi D. 1998. Evaluation of some agroindustrial waste for mass propagatrion of the nematode parasitic fungus Paecilomyces lilacinus. Nematologia Mediterranea 16: 135–138.
4.
Barrionuevo M.J., Murua M.G., Goane L., Meagher G., Navarro F. 2012. Life table studies of Rachiplusia nu (Guenée) and Chrysodeixis (= Pseudoplusia) includens (Walker) (Lepidoptera: Noctuidae) on artificial diet. Florida Entomologist 95: 944–951.
5.
Betancourt C.M., Scatoni I.B. 2006. Lepidópteros de Importancia Económica en el Uruguay. Reconocimiento, biología y daños de las plagas agrícolas y forestales. 2nd ed., Hemisferio Sur, Montevideo, Uruguay.
6.
Braga G.U.L., Flint S.D., Messias C.L., Anderson A.J., Roberts D.W. 2001. Effects of UV-B irradiance on conidia and germinants of the entomopathogenic hyphomycete Metarhizium anisopliae a study of reciprocity and recovery. Photochemistry and Photobiology 72: 140–146.
7.
Cagan L., Svercel M. 2001. The influence of ultraviolet light on pathogenicity of entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin to the European corn borer, Ostrinia nubilalis HBN. (Lepidoptera: Crambidae). Journal of Central European Agriculture 2 (4): 19–125.
8.
De Freitas Bueno R.C.O., De Freitas Bueno A., Moscardi F., Postali Parra J.R., Hoffmann-Campo C.B. 2011. Lepidopteran larva consumption of soybean foliage: Basis for developing multiple-species economic thresholds for pest management decisions. Pest Management Science 67 (2): 170–174.
9.
Di Rienzo J.A., Casanoves F., Balzarini M.G., González L., Tablada M., Robledo Y.C. InfoStat Version 2011. Grupo InfoStat, FCA; Universidad Nacional de Córdoba: Córdoba, Argentina, 2011: p. 195–199. Available on:
http://www.infostat.com.ar [Accessed: 13 November 2021].
10.
El-Husseini M.M.M. 2019. Effect of the fungus, Beauveria bassiana (Balsamo) Vuillemin, on the beet armyworm, Spodoptera exigua (Hübner) larvae (Lepidoptera: Noctuidae), under laboratory and open field conditions. Egyptian Journal of Pest Control 29: 52. DOI:
https://doi.org/10.1186/s41938....
11.
Faria M.R., Wraight S.P. 2007. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43: 237–256.
12.
Gatarayiha M.C., Laing M.D., Miller R.M. 2011. Field evaluation of Beauveria bassiana efficacy for the control of Tetranychus urticae Koch (Acari: Tetranychidae). Journal of Applied Entomology 135: 582–592.
13.
Goettel M.S., Eilenberg J., Glare T. 2010. Entomopathogenic fungi and their role in regulation of insect populations. p. 387–431. In: “Insect Control: Biological and Synthetic Agents” (L.I. Gilbert, D.S. Gill, eds.). Academic Press San Diego: California, USA.
14.
González-Maldonado M.B., Gurrola-Reyes J.N., Chaírez-Hernández I. 2015. Productos biológicos para el control de Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista Colombiana de Entomología 41 (2): 200–204.
15.
Greene G.L., Leppla N.C., Dickerson W.A. 1976. Velvet caterpillar: A rearing procedure and artificial medium. Journal of Economy Entomology 69: 487–488.
16.
Inglis G.D., Johnson D.L., Goettel M.S. 1996. Effect of bait substrate and formulation on infection of grasshopper nymphs by Beauveria bassiana. BioControl Science and Technology 6 (1): 35–50.
17.
Jakubowicz V., Taibo C.B., Sciocco-Cap A., Arneodo J.D. 2019. Biological and molecular characterization of Rachiplusia nu single nucleopolyhedrovirus, a promising biocontrol agent against the South American soybean pest Rachiplusia nu. Journal of Invertebrate Pathology 166: 107–211. DOI: 10.1016/j.jip.2019.107211.
18.
Kaiser D., Handschin S., Rohr R.P., Bacher S., Granbenweger G. 2020. Co-formulation of Beauveria bassiana with natural substances to control pollen beetles – synergy between fungal spores and colza oil. Biological Control 140: 104–106. DOI:
https://doi.org/10.1016/j.bioc....
19.
Kumar J., Ramlal A., Mallick D., Mishra V. 2021. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 10 (6): 1185. DOI:
https://doi.org/10.3390/plants....
20.
Lacey L.A., Brooks W.M. 1997. Initial handling and diagnosis of diseased insects. p. 1–15. In: “Manual of Techniques in Insect Pathology” (L.A. Lacey, ed.). Academic Press, San Diego, California, USA.
21.
Letourmy P. 1999. Expérimentation Agronomique Planifiée, 50 pp.
22.
Litwin A., Nowak M., Różalska S. 2020. Entomopathogenic fungi: unconventional applications. Reviews in Evironmental Science and Biotechnology 19: 23–42. DOI:
https://doi.org/10.1007/s11157....
23.
Lohse R., Jakobs-Schönwandt D., Patel A.V. 2014. Screening of liquid media and fermentation of an endophytic Beauveria bassiana strain in a bioreactor. AMB Express 4: 47. DOI:
https://doi.org/10.1186/s13568....
24.
Mascarin G.M., Lopes R.B., Delalibera Í.Jr., Fernandes É.K.K., Luz C., Faria M. 2019. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology 165: 46–53. DOI: 10.1016/j.jip.2018.01.001.
25.
Mascarin G.M., Alves S.B., Biaggioni Lopes R. 2010. Culture media selection for mass production of Isaria fumosorosea and Isaria farinosa. Brazilian Archives of Biology and Technology 53 (4): 753–761. DOI: 10.1590/S1516-89132010000400002.
26.
Mishra R.K., Bohra A., Kamaal N., Kumar K., Gandhi K., Sujayanand G.K., Saabale P.R., Satheesh Naik S.J., Birinchi K.S., Dharmendra K., Mishra M., Srivastava D.K., Singh N.P. 2018. Utilization of biopesticides as sustainable solutions for management of pests in legume crops: Achievements and prospects. Egyptian Journal of Biological Pest Control 28: 3. DOI:
https://doi.org/10.1186/s41938....
27.
Mascarin G.M., Jaronski S.T. 2015. The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology 32: 177. DOI: 10.1007/s11274-016-2131-3.
28.
Navarro F.R., Saini E.D., Leiva P.D. 2009. Clave pictórica de polillas de interés agrícola. Pergamino (BA) – Argentina: INTA, EEA Pergamino. Revista Investigaciones Agropecuarias: 69–70.
29.
Nazir T., Khan S., Qiu D. 2019. Biological control of insect pest. p. 1–14. In: “Pests Control and Acarology” (Haouas D., Hufnagel L., eds.). IntechOpen. Available on:
https://doi.org/10.5772/intech....
30.
Pastrana J.A., Di Iorio O.R., Navarro F., Chalup A., Villagran M.E. 2004. Lepidoptera. p. 416–515. In: “Catálogo de Insectos Fitófagos de la Argentina y sus Plantas Asociadas” (H.A. Cordo, G. Logarzo, K. Braun, O. Di Iorio, eds.). Sociedad Entomológica Argentina, Buenos Aires, Argentina.
31.
Pelizza S.A., Eliades L.A., Saparrat M.N.C., Cabello M.N., Scorsetti A.C., Lange C.E. 2012a. Screening of Argentine native fungal strains for biocontrol of the grasshopper Tropidacris collaris: relationship between fungal pathogenicity and chitinolytic enzyme activity. World Journal of Microbiology and Biotechnology 28: 1359–1366.
32.
Pelizza S.A., Eliades L.A., Scorsetti A.C., Cabello M.N., Lange C.E. 2012b. Entomopathogenic fungi from Argentina for the control of Schistocerca cancellata (Orthoptera: Acrididae) nymphs: fungal pathogenicity and enzyme activity. Biocontrol Science and Technology 22 (10): 1119–1129.
33.
Pelizza S.A., Schalamuk S., Simón M.R., Stenglein S.A., Pachecho-Marino S.G., Scorsetti A.C. 2018. Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu. Revista Argentina de Microbiología 50 (2): 189–201. DOI: 10.1016/j.ram.2017.06.002.
34.
Pereyra P.C. 1995. Ecología nutricional de la “oruga medidora” Rachiplusia nu (Lepidoptera: Noctuidae). Revista de la Sociedad Entomológica Argentina 54: 31–40.
35.
Pereyra P.C. 1998. Consumo foliar de soja por la “oruga medidora” Rachiplusia nu Guenée (Lepidoptera: Noctuidae). Revista de la Sociedad Entomológica Argentina 57: 41–44.
36.
Posadas J., Angulo L.M., Mini J.I., Lecuona R.E. 2012. Natural tolerance to UV-B and assessment of photoprotectants in conidia of six native isolates of Beauveria bassiana (Bals-Criv) Vuillemin. World Applied Sciences Journal 20 (7): 1024–1030.
37.
Ramírez-Godoy A., Vera-Hoyos M.P., Jiménez-Beltrán N., Restrepo-Díaz H. 2018. Evaluation of three commercial biopesticides for the reduction of Diaphorina citri (Hemiptera: Liviidae) populations. HortScience 53 (10): 1453–1460. DOI:
https://doi.org/10.21273/HORTS....
38.
Reddy N.P., Khan P.A.A., Devi K.U, Victor J.S., Sharma H.C. 2008. Assessment of the suitability of Tinopal as an enhancing adjuvant in formulations of the insect pathogenic fungus Beauveria bassiana (Bals.) Vuillemin. Pest Management Science 64: 909–915.
39.
Rombach M.C., Aguda R.M., Roberts D.W. 1988. Production of Beauveria bassiana (Deuteromycotina: Hyphomycetes) in different liquid media and subsequent conidiation of dry mycelium. Entomophaga 33: 315–324.
40.
Schuhmann A., Schmid A.P., Manzer S., Schulte J., Scheiner R. 2022. Interaction of insecticides and fungicides in bees. Frontiers in Insect Science 1: 808335. DOI: 10.3389/finsc.2021.808335.
42.
Vega F.E., Meyling N.V., Luangsa-ard J.J., Blackwell M. 2012. Fungal entomopathogens. p. 171–220. In: “Insect Pathology” (F. Vega, H.K. Kaya, eds.). Academic Press, San Diego, California, USA.