RAPID COMMUNICATION
First observation of the beetle Sericoderus lateralis consuming Cladosporium fulvum in a greenhouse tomato: potential for biological protection or risk to the crop?
Václav Psota 1, A-D,F
,
 
Jan Bezděk 2, B,D-E
,
 
Liam Harvey 3, C-E
 
 
 
More details
Hide details
1
Production Greenhouse, Farma Bezdínek s.r.o., Czech Republic
 
2
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Brno, Czech Republic
 
3
IPS Department, Biobest Group NV, Belgium
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2023-11-21
 
 
Acceptance date: 2024-01-02
 
 
Online publication date: 2024-01-14
 
 
Corresponding author
Václav Psota   

Production Greenhouse, Farma Bezdínek s.r.o., Czech Republic
 
 
 
HIGHLIGHTS
  • Frist observaction of mycophagy behaviour of Sericoderus lateralis on tomato leaf mould.
  • The observation demonstrated the Sericoderus lateralis ability to consume Cladosporium fulvum tissues.
  • The Sericoderus lateralis beetle can be a potential spore vector of Cladospoirum fulvum in tomato greenhouse crop.
KEYWORDS
TOPICS
ABSTRACT
For the first time, the mycophagous beetle Sericoderus lateralis (Gyllenhal, 1827) was documented feeding on tomato leaf mold (Cladosporium fulvum Cooke, 1878) tissues. The phenomenon was observed during the years 2022 and 2023 in a hydroponic tomato greenhouse situated near the Czech-Polish border within the cadastre of Dolní Lutyně municipality in Czechia. Greenhouse and laboratory observations confirmed that adult and larvae feeding activity led to a reduction in tomato leaf mold lesions. In addition, there was a positive correlation between tomato leaf mold disease progression and increased populations of S. lateralis in the tomato crop. Petri dish observations confirmed egg laying occurred on a diet of tomato leaf mold. Further research is warranted to discern whether S. lateralis is a potential biological control agent for tomato leaf mold or if it acts to facilitate the spread of the disease by acting as a spore vector.
ACKNOWLEDGEMENTS
Observations were allowed by the support of the Farma Bezdínek greenhouse company and its agronomical team.
RESPONSIBLE EDITOR
Andrea Toledo
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (31)
1.
Aghayev J.T. 2022. Diseases of solanaceous crops and integrated management of Cladosporium fulvum Cooke and Oidium lycopersici Cooke et Masse of tomato. Ukrainian Journal of Ecology 12: 87–94. DOI: https://doi.org/10.15421/2022_....
 
2.
Blažej L., Brůha P., Kadlec J., Lust Z., Škoda R., Švarc M., Vonička P. 2022. Results of a survey of beetles (Coleoptera) at the Vlčice hill (Šluknov, northern Bohemia). Sborník Severočeského Muzea, Přírodní Vědy 40: 139–176.
 
3.
Bowestead S. 1999. A revision of the Corylophidae (Coleoptera) of the West Palaearctic Region. Muséum d´Histoire Naturelle Genève, Genève, 203 pp.
 
4.
Bultman T.L., White F.W. Jr., Bowdish T.I. Welch A.M. 1998. A new kind of mutualism between fungi and insects. Mycological Research 102: 235–238. DOI: https://doi.org/10.1017/S09537....
 
5.
Elad Y. 2000. Trichoderma harzianum T39 preparation for biocontrol of plant diseases-control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Science and Technology 10: 499–507. DOI: https://doi.org/10.1080/095831....
 
6.
English-Loeb G., Norton A.P., Gadoury D.M., Seem R.C., Wilcox W.F. 1999. Control of powdery mildew in wild and cultivated grapes by a tydeid mite. Biological Control 14: 97–103. DOI: https://doi.org/10.1006/bcon.1....
 
7.
Gracia-Garza J.A., Reeleder R.D., Paulitz T.C. 1997. Degradation of sclerotia of Sclerotinia sclerotiorum by fungus gnats (Bradysia coprophila) and the biocontrol fungi Trichoderma spp. Soil Biology and Biochemistry 29: 123–129. DOI: https://doi.org/10.1016/S0038-....
 
8.
Harrington T.C., Stephen F., Aghayeva D.N. 2008. Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauracea. Mycotaxon 104: 399–404.
 
9.
Hoffman G.D., Rao S. 2013. Association of slugs with the fungal pathogen Epichloë typhina (Ascomycotina: Clavicipitaceae): potential role in stroma fertilisation and disease spread: Slug consumption of Epichloë stromata. Annals of Applied Biology 162: 324–334. DOI: https://doi.org/10.1111/aab.12....
 
10.
Hu S., Li X., Chen L., Wu Y., Meng L., Wang K., Li B., Liu F. 2023. Hexaconazole and binary mixtures of it plus fludioxonil efficiently control tomato leaf mold caused by Cladosporium fulvum. Crop Protection 174: 106374. DOI: https://doi.org/10.1016/j.crop....
 
11.
Hubert J., Stejskal V., Kubátová A., Munzbergová Z., Váňová M., Žďárková E. 2003. Mites as selective fungal carriers in stored grain habitats. Experimental & Applied Acarology 29: 69–87. DOI: https://doi.org/10.1023/A:1024....
 
12.
Iida Y., Ikeda K., Sakai H., Nakagawa H., Nishi O., Higashi Y. 2018. Evaluation of the potential biocontrol activity of Dicyma pulvinata against Cladosporium fulvum, the causal agent of tomato leaf mould. Plant Pathology 67: 1883–1890. DOI: https://doi.org/10.1111/ppa.12....
 
13.
Jiang Z.-R., Morita T., Jikumaru S., Kuroda K., Masuya H., Kajimura H. 2022. The role of mycangial fungi associated with ambrosia beetles (Euwallacea interjectus) in fig wilt disease: dual inoculation of Fusarium kuroshium and Ceratocystis ficicola can bring fig saplings to early symptom development. Microorganisms 10: 1912. DOI: https://doi.org/10.3390/microo....
 
14.
Lawrence J.F. 1989. Mycophagy in the Coleoptera: Feeding strategies and morphological adaptations. pp. 1–23. In: "Insect-Fungus Interactions" (N. Wilding, N.M. Collins, P.M. Hammond, J.F. Webber, eds.). Academic Press, London, UK. DOI: https://doi.org/10.1016/B978-0....
 
15.
Melidossian H.S., Seem R.C., English-Loeb G., Wilcox W.F., Gadoury D.M. 2005. Suppression of grapevine powdery mildew by a mycophagous mite. Plant Disease 89: 1331–1338. DOI: https://doi.org/10.1094/PD-89-....
 
16.
Miller S.A., Lewis Ivey M.L., Baysal-Gurel F., Xu X. 2015. A systems aproach to tomato disease management. Acta Horticulturae 1069: 167–172. DOI: https://doi.org/10.17660/ActaH....
 
17.
Nikitsky N.B., Mamontov S.N. 2016. New data of beetles from Tula Abatis forests (Coleoptera: Nitidulidae-Scolytidae) collected in window traps. Bulletin of Moscow Society of Naturalists, Biological Series 121: 25–37.
 
18.
Norton A.P., English-Loeb G., Gadoury D., Seem R.C. 2000. Mycophagous mites and foliar pathogens: Leaf domatia mediate tritrophic interactions in grapes. Ecology 81: 490–499. DOI: https://doi.org/10.1890/0012-9....
 
19.
Pijnakker J., Moerkens R., Vangansbeke D., Duarte M., Bellinkx S., Benavente A., Merckx J., Stevens I., Wäckers F. 2022. Dual protection: A tydeoid mite effectively controls both a problem pest and a key pathogen in tomato. Pest Management Science 78: 355–361. DOI: https://doi.org/10.1002/ps.664....
 
20.
Polilov A.A. 2011. Thoracic musculature of Sericoderus lateralis (Coleoptera, Corylophidae): miniaturization effects and flight muscle degeneration related to development of reproductive system. Entomological Review 91: 735–742. DOI: https://doi.org/10.1134/S00138....
 
21.
Polilov A.A., Beutel R.G. 2010. Developmental stages of the hooded beetle Sericoderus lateralis (Coleoptera: Corylophidae) with comments on the phylogenetic position and effects of miniaturization. Arthropod Structure & Development 39: 52–69. DOI: https://doi.org/10.1016/j.asd.....
 
22.
Ślipinśki A., Lawrence J.F., Cline A.R. 2010. Corylophidae LeConte, 1852. pp. 472–481. In: "Coleoptera, Beetles” Volume 2: “Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia Partim)" (W. Kükenthal, R.A.B. Leschen, R.G. Beutel, J.F. Lawrence, eds.). Walter de Gruyter, Berlin. DOI: https://doi.org/10.1515/978311....
 
23.
Smith P.M., Last F.T., Kempton R.J., Gisborne J.H. 1969. Tomato leaf mould: its assessment and effects on yield. Annals of Applied Biology 63: 19–26. DOI: https://doi.org/10.1111/j.1744....
 
24.
Sudermann M.A., McGilp L., Vogel G., Regnier M., Jaramillo A.R., Smart C.D. 2022. The diversity of Passalora fulva isolates collected from tomato plants in U.S. high tunnels. Phytopathology 112: 1350–1360. DOI: https://doi.org/10.1094/PHYTO-....
 
25.
Thomma B.P.H.J., Van Esse H.P., Crous P.W., De Wit P.J.G.M. 2005. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Molecular Plant Patholology 6: 379–393. DOI: https://doi.org/10.1111/j.1364....
 
26.
Trikhleb T.A., Simutnik S.A. 2008. First records of beetles Sericoderus lateralis (Gyllenhal, 1827) (Coleoptera: Corylophidae) and Stephostethus angusticollis (Gyllenhal, 1827) (Coleoptera: Latridiidae) as a hosts of parasitoid Lamennaisia ambigua (Nees, 1834) (Hymenoptera: Encyrtidae). Kharkov Entomological Society Gazette 15: 142–144.
 
27.
Veloukas T., Bardas G.A., Karaoglanidis G.S., Tzavella-Klonari K. 2007. Management of tomato leaf mould caused by Cladosporium fulvum with trifloxystrobin. Crop Protection 26: 845–851. DOI: https://doi.org/10.1016/j.crop....
 
28.
Vodka Š., Cizek L. 2013. The effects of edge-interior and understorey-canopy gradients on the distribution of saproxylic beetles in a temperate lowland forest. Forest Ecology and Management 304: 33–41. DOI: https://doi.org/10.1016/j.fore....
 
29.
Watanabe H., Horinouchi H., Muramoto Y., Ishii H. 2017. Occurrence of azoxystrobin-resistant isolates in Passalora fulva, the pathogen of tomato leaf mould disease. Plant Pathology 66: 1472–1479. DOI: https://doi.org/10.1111/ppa.12....
 
30.
Wingfield M.J., Barnes I., De Beer Z.W., Roux J., Wingfield B.D., Taerum S.J. 2017. Novel associations between ophiostomatoid fungi, insects and tree hosts: current status – future prospects. Biological Invasions 19: 3215–3228. DOI: https://doi.org/10.1007/s10530....
 
31.
Yavorskaya M.I., Polilov A.A. 2016. Morphology of the head of Sericoderus lateralis (Coleoptera, Corylophidae) with comments on the effects of miniaturization. Entomological Review 96: 395–406. DOI: https://doi.org/10.1134/S00138....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top