How do mentha plants induce resistance against Tetranychus urticae (Acari: Tetranychidae) in organic farming?
Ahmed Salah Hassan 1, A-B,D-E
Doha Abo Baker 4, B,E-F
More details
Hide details
Zoology and Agricultural Nematology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
Applied Centre of Entomonematodes, Faculty of Agriculture, Cairo University, Giza, Egypt
Pests and Plant Protection Department, National Research Centre, Dokki, Giza, Egypt
Medicinal and Aromatic Plants Department, Pharmaceutical and Drug Discovery Division, National Research Centre, Dokki, Giza, Egypt
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2018-03-13
Acceptance date: 2018-07-24
Online publication date: 2018-10-10
Corresponding author
Basem Abdel-Nasser Soudy   

Applied Centre of Entomonematodes, Faculty of Agriculture, Cairo University, Giza, Egypt
Journal of Plant Protection Research 2018;58(3):265-275
Tetranychus urticae (Acari: Tetranychidae) infesting many plants but Mentha viridis L., and Mentha piperita L., were low in number of infestation. Therefore the objective of this study was to identify the resistance of M. viridis and M. piperita plants against T. urticae by studying the external shape and internal contents of those plants. For morphological studies, dried leaves were covered with gold utilizing an Edwards Scan coat six sputter-coater. For histological studies, arrangements of Soft Tissue technique were used. For phytochemical studies, the plants were cut, dried and then high performance liquid chromatography (HPLC) was used. While feeding the mites were collected from the area between oily glands, trichomes and respiratory stomata in both mint species. The most important leaf structures in aromatic plants are the oily glands found on the external part of the leaves (both upper and lower epidermis). The number of oil glands in M. viridis leaves was greater than in M. piperita; the trichomes on the epidermis of M. viridis were greater in number than in M. piperita; the spongy mesophyll in M. viridis was much thicker than in M. piperita. The essential oils in the leaves of both mint species contained 71 compounds representing 99.61% of the total oil constituents identified from M. viridis before infestation, and 90.95% after infestation, and about 99.65% from M. piperita before infestation, and 99.98% after infestation.
The authors have declared that no conflict of interests exist.
Abu-Zeid E.N. 1992. Aromatic Plants and their Agricultural and Pharmaceutical Products. 1st ed. Al Dar Al Arabia for Printing and Distribution. Cairo, Egypt, 473 pp. (in Arabic).
Aharoni A., Giri A.P., Deuerlein S., Griepink F., Kogel de W.J., Verstappen F.W.A., Verhoeven H.A., Jongsmaa M.A., Schwab W., Bouwmeester H.J. 2003. Terpenoid metabolism in wild-type and transgenic arabidopsis plants. Plant Cell 15 (12): 2866–2884. DOI: https://doi.org/10.1105/tpc.01....
Bernasconi M.L., Turlings T.C.J., Ambrosetti L., Bassetti P., Dorn S., 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomologia Experimentalis et Applicata 87: 133–142. DOI: https://doi.org/10.1046/j.1570....
Bosly A.H. 2013. Evaluation of insecticidal activities of Mentha piperita and Lavandula angustifolia essential oils against house fly, Musca domestica L. (Diptera: Muscidae). Journal of Entomology and Nematology 5 (4): 50–54. DOI: https://doi.org/10.5897/jen201....
Búfalo J., Rodrigues T.M., Almeida L.F.R. de, Tozin L.R. dos S., Marques M.O.M., Boaro C.S.F. 2016. PEG-induced osmotic stress in Mentha x piperita L.: structural features and metabolic responses. Plant Physiology and Biochemistry 105: 174–184. DOI: https://doi.org/10.1016/j.plap....
Chaker A.N., Boukhebti H., Sahli F., Haichour R., Sahraoui R. 2011. Morphological and anatomical study of two medicinal plants from genus Mentha. Advances in Environmental Biology 5 (2): 219–221.
Choi J.-S., Kim E.-S. 2013. Structural features of glandular and non-glandular trichomes in three species of Mentha. Applied Microscopy 43 (2): 47–53. DOI: https://doi.org/10.9729/AM.201....
El-Sanady M.A., Soliman S.M., Younis A.A. 2008. Field and laboratory studies to evaluate five soybean varieties for their relative susceptibility to the two spotted spider mite, Tetranychus urticae Koch infestation (Acarina: Tetranychidae: Actenididea). Egypt. Journal Agriculture Research 86 (1): 77–88.
Eteghad S., Mirzaei H., Pour S.F., Kahnamui S. 2009. Inhibitory effects of endemic Thymus vulgaris and Mentha piperita essential oils on Escherichia coli O157: H7. Research Journal of Biological Sciences 4 (3): 340–344.
Günther K.U. 1953. Ber die taxonomische Gliederung und geographische Verbreitung der Insektenordnung der Phasmatodea. Beiträge zur Entomologie 3: 541–563.
Iscan G., Demirci F., Kirimer N., Kurkcuoglu M., Baser K.H.C. 2002. Antimicrobial screening: Mentha piperita essential oil. Journal of Agricultural and Food Chemistry 50: 3943–3946. DOI: 10.1021/jf011476k.
Kanatt S., Chander R., Sharma A. 2008. Chilean and mint mixture: A new preservative for meat and meat products. Food Chemistry 107: 845–852. DOI: https://doi.org/10.1016/j.food....
Kelsey R.G., Shafizadeh F. 1980. Glandular trichomes and sesquiterpene lactones of Artemisia nova (Asteraceae). Biochemical Systematics and Ecology 8 (4): 371–377. DOI: https://doi.org/10.1016/0305-1....
Kessler A., Baldwin I.T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144. DOI: https://doi.org/10.1126/scienc....
Kim S.W., Kang J., Park I.K. 2013. Fumigant toxicity of Apiaceae essential oils and their constituents against Sitophilus oryzae and their acetyl cholinesterase inhibitory activity. Journal of Asia-Pacific Entomology 16 (4): 443–448. DOI: https://doi.org/10.1016/j.aspe....
Kondo T., Yoshida K., Nakagawa A., Kawai T., Tamura H., Goto T. 1992. Structural basis of blue-color development in flower petals from Commelina communis. Nature 358: 515–518. DOI: https://doi.org/10.1038/358515....
Lane G.A., Sutherland O.R.W., Skipp R.A. 1987. Isoflavonoids insect feeding deterrents and antifungal components from root of Lupinus angustifolius. Journal of Chemical Ecology 13 (4): 773–783. DOI: https://doi.org/10.1007/BF0102....
Lee S., Tsao R., Peterson C., Coats J.R. 1997. Insecticidal activity of monoterpenoids to western corn root worm (Coleoptera: Chrysomelidae), two spotted spider mite (Acari: Tetranychidae) and Housefly (Diptera: Muscidae). National Academy of Sciences 90 (4): 883–892. DOI: https://doi.org/10.1073/pnas.9....
Levin S.A. 1976. A more functional response to predator-prey stability. The American Naturalist 111 (978): 381–383. DOI: https://doi.org/10.1086/283170.
Meda A., Lamien C.E., Romito M., Millogo J., Nacoulma O.G. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry 91: 571–577. DOI: https://doi.org/10.1016/j.food....
Mishra A., Lal R.K., Chanotiya C.S., Dhawan S.S. 2016. Genetic elaborations of glandular and non-glandular trichomes in Mentha arvensis genotypes: assessing genotypic and phenotypic correlations along with gene expressions. Protoplasma 254: 1045–1061. DOI: https://doi.org/10.1007/s00709....
Moraes C.M. de, Mescher M.C., Tumlinson J.H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410: 577–580. DOI: https://doi.org/10.1038/350690....
Najafian S., Moradi M., Sepehrimanesh M. 2016. Polyphenolic contents and antioxidant activities of two medicinal plant species, Mentha piperita and Stevia rebaudiana, cultivated in Iran. Comparative Clinical Pathology 25 (4): 743–747. DOI: https://doi.org/10.1007/s00580....
Padmini E., Valarmathi A.M., Rani U. 2010. Comparative analysis of chemical composition and antibacterial activities of Mentha spicata and Camella sinensis. Asian Journal of Experimental Biological Sciences (4): 772–781.
Paré P.W., Tumlinson J.H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiology 121: 325–331. DOI: https://doi.org/10.1104/pp.121....
Parry W.J. 1969. Spices Morphology, Histology and Chemistry. Vol. II. Chemical Publishing Company, New York, USA.
Pauwels L., Inzé D., Goossens A. 2009. Jasmonate-inducible gene: What does it mean? Trends Plant Science 14: 87–91. DOI: https://doi.org/10.1016/j.tpla....
Price P.W., Denno R.F., Eubanks M.D., Finke D.L., Kaplan I. 2011. Insect Ecology: Behavior, Populations and Communities. Cambridge University Press, Cambridge, 828 pp.
Šarić-Kundalić B. Fialová S., Dobeš Ch., Ölzant S., Tekeľová D., Grančai D., Reznicek G., Saukel J. 2009. Multivariate numerical taxonomy of Mentha species, hybrids, varieties and cultivars. Scientia Pharmaceutica 77: 851–76. DOI: https://doi.org/10.3797/scipha....
Schlee D. 1986. Ökologische Biochemie. Springer Verlag Berlin Heidelberg, New York, 355 pp.
Seun-Ah Y., Sang-Kyung J., Eun-Jung L., Chang-Hyun S., In-Seon L. 2010. Comparative study of the chemical composition and antioxidant activity of six essential oils and their components. Natural Product Research 24 (2): 140–151. DOI: https://doi.org/10.1080/147864....
Shakoor A., Muhammad A.S., Muhammad A., Muhammad H.B. 2010. Role of plant morphological characters towards resistance of some cultivars of tomato against phytophagous mites (Acari) under greenhouse conditions. Pakistan Journal of Life and Social Sciences 8 (2): 131–136.
Sikora M., Świeca M. Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chemistry 239: 1160–1166. DOI: https://doi.org/10.1016/j.food....
Sokovic M.D., Vukojević J.M. 2009. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 14 (1): 238–249. DOI: https://doi.org/10.3390/molecu... 1).
Swain T. 1977. Secondary compounds as protective agents. Annual Review of Plant Physiology 28 (1): 479–501. DOI: 10.1146/annurev.pp.28.060177.002403.
Taylor L.P., Grotewold E. 2005. Flavonoids as developmental regulators. Current Opinion in Plant Biology 8 (3): 317–323. DOI: https://doi.org/10.1016/j.pbi.....
Turlings T.C.J., Tumlinson J.H., Lewis W.J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251–1253. DOI: https://doi.org/10.1126/scienc....
van den Boom C.E.M., van Beek T.A., Dicke M. 2003. Differences among plant species in acceptance by the spider mite Tetranychus urticae Koch. Journal Applied Entomology 127: 177–183. DOI: https://doi.org/10.1046/j.1439....
Vet L.E.M., Dicke M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology 37: 141–172. DOI: https://doi.org/10.1146/annure....
Villarroel C.A., Jonckheere W., Alba J.M., Glas J.J., Dermauw W., Haring M.A., Leeuwen T.V., Schuurink R.C., Kant M.R. 2016. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. The Plant Journal 86: 119–131. DOI: https://doi.org/10.1111/tpj.13....
Wink M. 1988. Plant breeding-importance of plant secondary metabolites for protection against pathogens and herbivores. Theoretical and Applied Genetics 75 (2): 225–233. DOI: https://doi.org/10.1007/BF0030....
Wuyts N., De Waele D., Swennen R. 2006. Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminate Grande naive) roots. Plant Physiology and Biochemistry 44 (5–6): 308–314. DOI: 10.1016/j.plaphy.2006.06.005.
Zhang Q.H., Schylter F., Battisti A., Birgersson G., Anderson P. 2003. Electrophysiological responses of Thaumetopoea pityocampa females to host volatiles: implications for host selection of active and inactive terpenes. Journal of Pest Science 76: 103–107. DOI: https://doi.org/10.1046/j.1439....
Journals System - logo
Scroll to top