Identification and characterization of Pseudomonas syringae pv. syringae strains from various plants and geographical regions
Maryam Khezri 1, A-B,D
More details
Hide details
Department of Plant Protection, Faculty of Agriculture, Urmia University, 5756151818 Urmia, Iran
California Citrus Research Board, Visalia, CA, USA
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2018-05-17
Acceptance date: 2018-10-02
Online publication date: 2018-12-06
Corresponding author
Maryam Khezri   

Department of Plant Protection, Faculty of Agriculture, Urmia University, 5756151818 Urmia, Iran
Journal of Plant Protection Research 2018;58(4):354-361
Pseudomonas syringae pv. syringae (Pss) constitutes a diverse group of bacterial strains that cause canker of stone fruits, blight of cereals and red streak of sugarcane. The purpose of this study was to determine how diverse Iranian strains of Pss are when they come from different hosts. We compared a total of 32 Pss strains isolated from stone fruits, barley, wheat and sugarcane from different geographical regions of Iran based on their phenotypic and molecular properties. Strains showed some variation regarding carbon and nitrogen utilization. Pss strains were similar in their protein banding patterns. Additional bands were found in sugarcane strains. Most strains showed one indigenous plasmid DNA and a few had two and some none. The genes of syrB and syrD encoding syringomycin synthesis and secretion, respectively, were amplified using specific primers in polymerase chain reaction. Syringomycin, producing strains amplified two DNA fragments of 752 and 446 bp representing syrB and syrD genes, respectively. Primer specificity was shown for Pss using various genera. Based on the results of this study, it is suggested that Pss strains from different hosts and geographical regions show diversity in phenotypic and molecular characters. It is thought that phenotypic variation is due to adaptation to specific hosts and niches for survival and pathogenicity.
The authors have declared that no conflict of interests exist.
Abdellatif E., Kaluzna M., Janse J.D., Sobiczewski P., Helali F., Lamichhane J.R. 2017. Phenotypic and genetic characterization of Pseudomonas syringae strains associated with the recent citrus bacterial blast and bacterial black pit epidemics in Tunisia. Plant Pathology 66 (7): 1081−1093. DOI: https://doi.org/10.1111/ppa.12....
Bender C.L., Alarcon-Chaidez F., Gross D.C. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiology and Molecular Biology Reviews 63 (2): 266−292.
Bultreys A., Gheysen I. 1999. Biological and molecular detection of toxic lipodepsipeptide producing Pseudomonas syringae strains and PCR identification in plants. Applied and Environmental Microbiology 65: 1904−1906.
Bultreys A., Kaluzna M. 2010. Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. Journal of Plant Pathology 92: 21−33. DOI: http://doi.ogr./10.4454/jpp.v9....
Dariush S., Ebadi A.A., Khoshkdaman M., Rabiei B., Elahinia A. 2012. Characterising the genetic diversity of Pseudomonas syringae pv. syringae isolated from rice and wheat in Iran. Plant Protection Science 48 (4): 162−169. DOI: 10.17221/64/2011-PPS}.
Gasic K., Prokic A., Ivanovic M., Kuzmanovic N., Obradovic A. 2012. Differentiation of Pseudomonas syringae pathovars originating from stone fruits. Journal of Pesticides and Phytomedicine 27 (3): 219−229. DOI: 10.2298/PIF1203219G.
Gonzalez-Villanuevaa L., Arvizu-Gomeza J.L., Hernandez-Moralesb A., Aguilera-Aguirrea S., Alvarez-Moralesa A. 2014. The PhtL protein of Pseudomonas syringae pv. phaseolicola NPS3121 affects the expression of both phaseolotoxin cluster (Pht) and Non-Pht encoded genes. Microbiological Research 169 (2−3): 221−231. DOI: 10.1016/j.micres.2013.05.002.
Gutierrez-Barranquero J.A., Cazorla F.M., de Vicente A., Sundin G.W. 2017. Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics 18 (1): 365. DOI: http://doi.org/10.1186/s12864-....
Hugh R., Leifson E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. Journal of Bacteriology 66: 24−26.
Ilicic R., Balaz J., Stojsin V., Bagi F., Pivic R., Stanojkovic-Sebic A., Josic D. 2016. Molecular characterization of Pseudomonas syringae pvs. from different host plants by repetitive sequence-based PCR and multiplex-PCR. Zemdirbyste-Agriculture 103 (2): 199−206. DOI 10.13080/z-a.2016.103.026.
Ivanovic Z., Stankovic S., Zivkovic S., Gavrilovic V., Kojic M., Fira D. 2012. Molecular characterization of Pseudomonas syringae isolates from fruit trees and raspberry in Serbia. European Journal of Plant Pathology 134 (1): 191−203. DOI: 10.1007/s10658-012-9978-4.
Kaluzna M., Pulawska J., Sobiczewski P. 2010. The use of PCR melting profile for typing of Pseudomonas syringae isolates from stone fruit trees. European Journal of Plant Pathology 126 (4): 437−443. DOI: 10.1007/s10658-009-9553-9.
Khezri S., Rahimian H., Ahangaran A., Mohammadi M. 2010. Comparisons of Iranian strains of Pseudomonas syringae pv.syringae from various hosts with different methods. International Journal of Agriculture and Biology 12: 106−110.
Khodaygan P., Sedaghati E., Hoseinipoor A., Baghaei Ravari S. 2012. Study on canker disease of stone fruits and antibacterial effects of some plant essentials on its causal agent in Kerman province. Iranian Journal of Plant Pathology 48 (3): 303−317.
Laemmli V.K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680−685.
Lelliot R.A., Stead D.E. 1987. Methods for the diagnosis of bacterial diseases of plants. In: “Methods in Plant Pathology”. Vol. 2. (T.F. Preece, ed.). Oxford, Blackwell Scientific Publ. Ltd, UK, 216 pp.
Maniatis T., Fritisch E.F., Sambrook J. 1998. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1546 pp.
Mohammadi M., Ghasemi A., Rahimian H. 2001. Phenotypic characterization of Iranian strains of Pseudomonas syringae pv. syringae van Hall, the causal agent of bacterial canker disease of stone fruits trees. Journal of Agricultural Science and Technology 3: 51−65.
Natalini E., Rossi M.P., Barionovi D., Scortichini M. 2006. Genetic and pathogenic diversity of Pseudomonas syringae pv. syringae isolates associated with bud necrosis and leaf spot of pear in a single orchard. Journal of Plant Pathology 88 (2): 219−223. DOI: http://dx.doi.org/10.4454/jpp.....
Rahimian H. 1995. The occurrence of bacterial red streak of sugarcane caused by Pseudomonas syringae pv. syringae in Iran. Journal of Phytopathology 143 (6): 321−324. DOI: 10.1111/j.1439-0434.1995.tb00268.x.
Rohlf F.J. 2000. NTSYSpc: Numerical taxonomy and multivariate analysis system. Version 2.1. Exeter Software Setauket, NY, USA.
Schaad N.W., Jones J.B., Chun W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. St. Paul, MN, APS Press, 373 pp. DOI: https://doi.org/10.1046/j.1365....
Soma A., Samson R. 1991. Protein and enzymatic criteria forthe characterization of phytopathogenic Pseudomonas fluorescens. Comptes Rendus De l’Academie Des Sciences. Serie III, Sciences De La Vie 312 (5): 203−208.
Sorensen K.N., Kim K.H., Takemoto J.Y. 1998. PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Applied and Environmental Microbiology 64 (1): 226−230.
Stavrinides J., Guttman D.S. 2004. Nucleotide sequence and evolution of the five-plasmid complement of the phytopathogen Pseudomonas syringae pv. maculicola ES4326. Journal of Bacteriology 186 (15): 5101−5115. DOI: 10.1128/JB.186.15.5101-5115.2004.
Sulikowska M., Sobiczewski P. 2008. Pseudomonas spp. isolated from stone fruit trees in Poland. Zemdirbyste-Agriculture 95 (3): 166−170.
Suslow T.V., Schroth M.N., Isaka M. 1982. Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72: 917−918.
Ravindran A., Jalan N., Yuan J.S., Wang N., Gross D.C. 2015. Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intra pathovar traits associated with plant pathogenesis. Microbiology Open 4 (4): 553−573. DOI: 10.1002/mbo3.261.
Valencia-Botin A.J., Cisneros-Lopez M.E. 2012. A review of the studies and interactions of Pseudomonas syringae pathovars on wheat. International Journal of Agronomy 4 (1): 5. DOI: http://doi.org/10.1155/2012/69....
Vaughn V.L., Gross D.C. 2016. Characterization of salA, syrF, and syrG genes and attendant regulatory networks involved in plant pathogenesis by Pseudomonas syringae pv. syringae B728a. PLoS One: e0150234. DOI: http://doi.org/10.1371/journal....
Young J.M. 2010. Taxonomy of Pseudomonas syringae. Journal of Plant Pathology 92 (1, Supplement): S5−14. DOI: 10.4454/jpp.v92i1sup.2501.
Zhao Y., Ma Z., Sundin G.W. 2005. Comparative genomic analysis of the pPT23A plasmid family of Pseudomonas syringae. Journal of Bacteriology 187 (6): 2113−2126. DOI: 10.1128/JB.187.6.2113-2126.2005.
Journals System - logo
Scroll to top