Insecticide susceptibility of the green plant bug, Apolygus lucorum (Homoptera: Miridae) and two predatory arthropods
Wei Mu 1
More details
Hide details
College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Submission date: 2015-05-27
Acceptance date: 2015-10-15
Corresponding author
Wei Mu
College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
Journal of Plant Protection Research 2015;55(4):362-370
The green plant bug (Apolygus lucorum Meyer-Dür) is a key pest of Bt cotton in China. Along with biological control, chemical control is one of the most important strategies in A. lucorum Integrated Pest Management (IPM). The goal of this study was to evaluate the toxicity of eight conventional insecticides to A. lucorum and to assess the susceptibility of two generalist predators Chrysopa sinica (Jieder) and Propylaea japonica (Thunbery) to insecticides that are commonly used in A. lucorum management. Via glass-vial and leaf-dip bioassay, toxicity tests with selected insecticides at two different life-stages of A. lucorum indicated significant differences between the LD 50 or LC 50 values for these compounds within different insecticidal classes. Phenylpyrazole fipronil had the highest toxicity to 4th-instar nymphs and adults of A. lucorum, whereas neonicotinoid imidacloprid had the lowest toxicity among the insecticides. Females were more tolerant to insecticides than were males, as shown by the higher LD 50 values for females. Furthermore, laboratory tests showed that endosulfan had the highest selectivity to C. sinica and P. japonica: the selective toxicity ratios (STRs) were superior to other tested insecticides, particularly imidacloprid, and were 5.396 and 4.749-fold higher than baseline STRs, respectively. From this study, we conclude that fipronil can potentially be used to efficiently control A. lucorum. An alternative control agent worth consideration is endosulfan, owing to its relative safety to non-targeted natural enemies.
The authors have declared that no conflict of interests exist.
Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2): 265–267.
Ahmed M.A.I., Eraky E.-S.A., Mohamed M.F., Soliman A.-A.S.2015. Potential toxicity assessment of novel selected pesticides against sand termite, Psammotermes hypostoma Desneux workers (Isoptera: Rhinotermitidae) under field conditions in Egypt. Journal of Plant Protection Research 55 (2): 193–197.
Al-Kherb W.A. 2011. Field efficacy of some neonicotinoid insecticides on whitefly Bemisia tabaci(Homoptera: Aleyrodidae) and its natural enemies in cucumber and tomato plants in Al-qassim Region, KSA. Journal of Entomology 8 (5): 429–439.
Arthur F.H. 2012. Lethal and sub-lethal effects from short-term exposure of Rhyzopertha dominica on wheat treated with Storicide II®. Journal of Pest Science 85 (2): 261–265.
Barčić J.I., Bažok R., Bezjak S., Čuljak T.G., Barčić J. 2006. Combinations of several insecticides used for integrated control of Colorado potato beetle (Leptinotarsa decemlineata, Say., Coleoptera: Chrysomelidae). Journal of Pest Science 79 (4): 223–232.
Deng S.D., Xu J., Zhang Q.W., Zhou S.W., Xu G.J. 2003. Effect of transgenic Bt cotton on population dynamics of the nontarget pests and natural enemies of pests. Acta Entomologica Sinica 46 (1): 1–5.
Desneux N., Decourtye A., Delpuech J.-M. 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52 (1): 81–106.
Easterbrook M.A. 1997. A field assessment of the effects of insecticides on the beneficial fauna of strawberry. Crop Protection 16 (2): 147–152.
Feng H., Jin Y., Li G., Feng H. 2012. Establishment of an artificial diet for successive rearing of Apolygus lucorum(Hemiptera: Miridae). Journal of Economic Entomology 105 (6): 1921–1928.
Fitzgerald J. 2004. Laboratory bioassays and field evaluation of insecticides for the control of Anthonomus rubi, Lygus rugulipennis and Chaetosiphon fragaefolii, and effects on beneficial species, in UK strawberry production. Crop Protection 23 (9): 801–809.
Guo T.E., Zhang Z.Q., Zhou C., Liu F., Mu W. 2010. Susceptibilities of Lygus lucorum Meyer-Dür (Hemiptera: Miridae) from five cotton-growing regions in Shandong, China to selected insecticides. Acta Entomologica Sinica 53 (9): 993–1000.
Hardee D.D., Bryan W.W. 1997. Influence of Bacillus thuringiensis-transgenic and nectariless cotton on insect populations with emphasis on the tarnished plant bug (Heteroptera: Miridae). Journal of Economic Entomology 90 (2): 663–668.
Kumar R., Kranthi S., Nitharwal M., Jat S.L., Monga D. 2012. Influence of pesticides and application methods on pest and predatory arthropods associated with cotton. Phytoparasitica 40 (5): 417–424.
Liu Y.Q., Lu Y., Wu K.M., Wyckhuys K.A.G., Xue F.S. 2008. Lethal and sublethal effects of endosulfan on Apolygus lucorum(Hemiptera: Miridae). Journal of Economic Entomology 101 (6): 1805–1810.
Liu Y.Q., Wu K.M., Xue F.S. 2007. [Progress on the studies of Miridae resistance management]. Entomological Journal of East China 16 (2): 141–148. (in Chinese, with English summary).
López J.D., Hoffmann W.C., Latheef M.A., Fritz B.K., Martin D.E., Lan Y. 2008. Adult vial bioassays of insecticidal toxicity against cotton fleahopper, Pseudatomoscelis seriatus(Hemiptera: Miridae). Journal of Pesticide Science 33 (3): 261–265.
Lu Y.H., Liang G.M., Wu K.M. 2007. [Advances in integrated management of cotton mirids]. Plant Protection 33 (6): 10–15. (in Chinese, with English summary).
Lu Y.H., Qiu F., Feng H.Q., Li H.B., Yang Z.C., Wyckhuys K.A.G., Wu K.M. 2008a. Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt cotton in China. Crop Protection 27 (3–5): 465–472.
Lu Y.H., Wu K.M. 2011. Mirid bugs in China: pest status and management strategies. Outlooks on Pest Management 22 (6): 248–252.
Lu Y.H., Wu K.M., Cai X.M., Liu Y.Q. 2008b. [A rearing method for mirids using the green bean, Phaseolus vulgaris in the laboratory]. Acta Phytophylacia Sinica 35 (3): 215–219. (in Chinese, with English summary).
Lu Y.H., Wu K.M., Jiang Y.Y., Guo Y.Y., Desneux N. 2012a. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487 (7407): 362–365.
Lu Y.H., Jiao Z., Wu K.M. 2012b. Early season host plants of Apolygus lucorum (Heteroptera: Miridae) in northern China. Journal of Economic Entomology 105 (5): 1603–1611.
Lu Y.H., Wu K.M., Jiang Y.Y., Xia B., Li P., Feng H.Q., Wyckhuys K.A.G., Guo Y.Y. 2010. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328 (5982): 1151–1154.
Lu Z.Z., Zalucki M.P., Perkins L.E., Wang D.Y., Wu L.L. 2013. Towards a resistance management strategy for Helicoverpa Armigera in Bt-cotton in northwestern China: an assessment of potential refuge crops. Journal of Pest Science 86 (4): 695–703.
Ma Y.H., Gao Z.L., Dang Z.H., Li Y.F., Pan W.L. 2012. Effect of temperature on the toxicity of several insecticides to Apolygus lucorum (Heteroptera: Miridae). Journal of Pesticide Science 37 (2): 135–139.
Men X.Y., Yu Y., Zhang A.S., Li L.L., Zhang J.T., Ge F. 2008. Life table of the laboratory population of Lygus lucorum MeyerDür (Hemiptera: Miridae) at different temperatures. Acta Entomologica Sinica 51 (11): 1216–1219.
Moens J., Tirry L., De Clercq P. 2012. Susceptibility of cocooned pupae and adults of the parasitoid Microplitis mediator to selected insecticides. Phytoparasitica 40 (1): 5–9.
Pan H., Lu Y., Wyckhuys K.A.G., Wu K. 2013. Preference of a polyphagous mirid bug, Apolygus lucorum (Meyer-Dür) for flowering host plants. PLoS One 8 (7): e68980. DOI: 10.1371/journal.pone.0068980.
Planes L., Catalán J., Tena A., Porcuna J.L., Jacas J.A., Izquierdo J., Urbaneja A. 2013. Lethal and sublethal effects of spirotetramat on the mealybug destroyer, Cryptolaemus montrouzieri. Journal of Pest Science 86 (2): 321–327.
Saber M., Abedi Z. 2013. Effects of methoxyfenozide and pyridalyl on the larval ectoparasitoid Habrobracon hebetor. Journal of Pest Science 86 (4): 685–693.
Seagraves M.P., Lundgren J.G. 2012. Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies. Journal of Pest Science 85 (1): 125–132.
Shi X.B., Jiang L.L., Wang H.Y., Qiao K., Wang D., Wang K.Y. 2011. Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Management Science 67 (12): 1528–1533.
Shi X.Q., Xiong M.H., Jiang W.H., Wang Z.T., Guo W.C., Xia Z.H., Fu W.J., Li G.Q. 2012. Efficacy of endosulfan and fipronil and joint toxic action of endosulfan mixtures against Leptinotarsa decemlineata (Say). Journal of Pest Science 85 (4): 519–526.
Snodgrass G.L. 1996. Glass-vial bioassay to estimate insecticide resistance in adult tarnished plant bugs (Heteroptera: Miridae). Journal of Economic Entomology 89 (5): 1053–1059.
Snodgrass G.L., Gore J., Abel C.A., Jackson R. 2008. Predicting field control of tarnished plant bug (Hemiptera: Miridae) populations with pyrethroid insecticides by use of glassvial bioassays. Southwestern Entomologist 33 (3): 181–189.
Snodgrass G.L., Scott W.P. 2000. Seasonal changes in pyrethriod resistance in tarnished plant bug (Heteroptera: Miridae) population during a three-year period in the delta area of Arkansas, Louisiana, and Mississippi. Journal of Economic Entomology 93 (2): 441–446.
Tan Y., Biondi A., Desneux N., Gao X.W. 2012. Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum(Meyer-Dür). Ecotoxicology 21 (7): 1989–1997.
Udayagiri S., Norton A.P., Welter S.C. 2000. Integrating pesticide effects with inundative biological controli: interpretation of pesticide toxicity curves for Anaphes iole in strawberries. Entomologia Experimentalis et Applicata 95 (1): 87–95.
Wang K.Y., Guo Q.L., Xia X.M., Wang H.Y., Liu T.X. 2007. Resistance of Aphis gossypii (Homoptera: Aphididae) to selected insecticides on cotton from five cotton production regions in Shandong, China. Journal of Pesticide Science 32 (4): 372–378.
Węgorek P., Zamojska J., Mrówczyński M. 2011. High resistance to pyrethroid insecticides in the Polish pollen beetle (Meligethes aeneus F.): the role of oxidative metabolism. Phytoparasitica 39 (1): 43–49.
Wheeler A.G. 2001. Biology of the Plant Bugs (Hemiptera: Miridae): Pests, Predators, Opportunists. Cornell University Press, Ithaca, USA, 528 pp.
Wu K.M. 2007. Environmental impact and risk management strategies of Bt cotton commercialization in China. Chinese Journal of Agricultural Biotechnology 4 (2): 93–97.
Wu K.M., Li W., Feng H.Q., Guo Y.Y. 2002. Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in northern China. Crop Protection 21 (10): 997–1002.
Wu K.M., Lu Y.H., Feng H.Q., Jiang Y.Y., Zhao J.Z. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321 (5896): 1676–1678.
Xue M., Li Q. 2002. Studies on selective toxicity of six insecticides between green peach aphid and ladybirds. Insect Science 9 (2): 17–22.
Zhang L., Lu Y., Liang G. 2013. A method for field assessment of plant injury elicited by the salivary proteins of Apolygus lucorum. Entomologia Experimentalis et Applicata 149 (3): 292–297.
Zhang Y.X., Cao Y.P., Bai L.X., Cao C.Y. 1986. [Plant bug damage on cotton in different growing stages and the threshold for control]. Acta Phytophylacica Sinica 13 (2): 73–78. (in Chinese, with English summary).
Zhang Z.B. 1988. Toxicity Determination of Insecticides: Principle, Method and Application. Science Press, Beijing, China, 367 pp.
Zhang Z.Q., Guo T.E., Wang W., Liu F., Mu W. 2009. Assessment of relative toxicity of insecticides to the green plant bug, Lygus lucorum Meyer-Dür (Hemiptera: Miridae), by two different bioassay methods. Acta Entomologica Sinica 52 (9): 967–973.
Zhao S.H. 2000. [Plant Chemical Protection]. p. 250–253. China Agriculture Press, Beijing, China, 337 pp. (in Chinese)Zhao X., Salgado V.L. 2010. The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides. Pesticide Biochemistry and Physiology 97 (2): 153–160.
Zhu F.X., Wang J.X., Liu F., Mu W., Zhang X. 1998. Studies on insecticide susceptibility of lady birds. Acta Entomologica Sinica 41 (4): 359–365.
Journals System - logo
Scroll to top