REVIEW
 
HIGHLIGHTS
  • Pesticide
  • residues
  • colorimetric
  • electrochemical
  • portable
  • on site
  • detection
KEYWORDS
TOPICS
ABSTRACT
Contamination by pesticides is known to be one of the major issues that are enormously degrading the quality of food and fodder crops together with increased agricultural, environmental and aquatic pollution. Many analytical and laboratory methods are available for detection of these pesticides in products in order to maintain food security but these methods are not readily accessible to most people including farmers for on-site and onfield detection in the crops. The development of more convenient, fast, and cost-effective methods that can be easily accessed by laymen based on simple paper strips or mobile analyzers etc. are need of the time. This review includes a brief discussion about novel devices which have been introduced in the field for pesticide detection viz. easy to use colorimetric and non-colorimetric detection methods based on various electrochemical and optical sensing strategies. These techniques exhibited promising results in field of on-site pesticide detection owing to their easy production, high sensitivity and readily accessible results obtained with these portable devices. This review further describes emerging prospects, deficits and challenges associated with the application of the aforementioned sensing devices.
ACKNOWLEDGEMENTS
The author is thankful to the authorities of Chandigarh University for all the necessary help.
RESPONSIBLE EDITOR
Piotr Kaczyński
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (54)
1.
AlFaris N.A., ALTamimi J.Z., ALOthman Z.A., Al Qahtani S.F., Wabaidur S.M., Ghfar A.A., Aldayel T.S. 2020a. Analysis of aflatoxins in foods retailed in Saudi Arabia using immunoaffinity column cleanup and high-performance liquid chromatography-fluorescence detection. Journal of King Saud University - Science 32 (2): 1437–1443. DOI: https://doi.org/10.1016/j.jksu....
 
2.
AlFaris N.A., ALTamimi J.Z., ALOthman Z.A., Wabaidur S.M., Ghafar A.A., Aldayel T.S. 2020b. Development of a sensitive liquid-liquid extraction and ultra-performance liquid chromatography-tandem mass spectrometry method for the analysis of carbaryl residues in fresh vegetables sold in Riyadh. Journal of King Saud University – Science 32 (4): 2414–2418. DOI: https://doi.org/10.1016/j.jksu....
 
3.
Al-Shaalan N.H., Al-Othman Z.A., Al-Wahaibi L.H., Alabdulmonem H. 2019. High performance removal and simulation studies of diuron pesticide in water on MWCNTs. Journal of Molecular Liquids 289: 111039. DOI: https://doi.org/10.1016/j.moll....
 
4.
Arjmand M., Saghafifar H., Alijanianzadeh M., Soltanolkotabi M. 2017. A sensitive tapered-fiber optical biosensor for the label-free detection of organophosphate pesticides. Sensors and Actuators B: Chemical 249: 523–532. DOI: http://dx.doi.org/10.1016/j.sn....
 
5.
Badawy M.E., El-Aswad A.F. 2014. Bioactive paper sensor based on the acetylcholinesterase for the rapid detection of organophosphate and carbamate pesticides. International Journal of Analytical Chemistry 2014: 536823. DOI: https://doi.org/10.1155/2014/5....
 
6.
Bala R., Dhingra S., Kumar M., Bansal K., Mittal S., Sharma R.K., Wangoo N. 2017. Detection of organophosphorus pesticide–malathion in environmental samples using peptide and aptamer based nanoprobes. Chemical Engineering Journal 311: 111–116. DOI: https://doi.org/10.1016/j.cej.....
 
7.
Bala R., Sharma R.K., Wangoo N. 2016. Development of gold nanoparticles-based aptasensor for the colorimetric detection of organophosphorus pesticide phorate. Analytical Bioanalytical Chemistry 408: 333–338. DOI: https://doi.org/10.1007/s00216....
 
8.
Chang J., Li H., Hou T., Li F. 2016. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity. Biosensors & Bioelectronics 86: 971–977. DOI: doi:10.1016/j.bios.2016.07.022.
 
9.
Chen M., Luo W., Liu Q., Hao N., Zhu Y., Liu M., Wang L., Yang H., Chen X. 2018. Simultaneous in-situ extraction and fabrication of SERS substrate for reliable detection of thiram residue. Analytical Chemistry 22: 13647–13654. DOI: https://doi.org/10.1021/acs.an....
 
10.
Chu S., Wang H., Ling X., Yu S., Yang L., Jiang C. 2020. Portable smartphone platform using ratiometric fluorescent paper strip for visual quantitative sensing. ACS Applied Materials & Interfaces 12: 12962–12971. DOI: https://doi.org/10.1021/acsami....
 
11.
Dasriya V., Joshi R., Ranveer S. 2021. Rapid detection of pesticide in milk, cereal and cereal based food and fruit juices using paper strip-based sensor. Science Reports 11: 18855. DOI: https://doi.org/10.1038/s41598....
 
12.
Dissanayake N.M., Arachchilage J.S., Samuels T.A., Obare S.O. 2019. Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta 200: 218–227. DOI: https://doi.org/10.1016/j.tala....
 
13.
Fauzi N.I.M., Fen Y.W., Omar N.A.S., Hashim H.S. 2021. Recent advances on detection of insecticides using optical sensors. Sensors 21: 3856. DOI: https://doi.org/10.3390/s21113....
 
14.
Fu G., Chen W., Yue X., Jiang X. 2013. Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry. Talanta 103: 110–115. DOI: 10.1016/j.talanta.2012.10.016.
 
15.
Guo X., Zhang X., Cai Q., Shen T., Zhu S. 2013. Developing a novel sensitive visual screening card for rapid detection of pesticide residues in food. Food Control 30 (1): 15–23. DOI: https://doi.org/10.1016/j.food....
 
16.
Guo Y., Sun X., Liu X., Sun X., Zhao G., Chen D., Wang X. 2015. A miniaturized portable instrument for rapid determination pesticides residues in vegetables and fruits. IEEE Sensors Journal 15: 4046–4052. DOI: 10.1109/JSEN.2015.2410532.
 
17.
Hara T.O., Singh B. 2021. Electrochemical biosensors for detection of pesticides and heavy metal toxicants in water: recent trends and progress. ACS EST Water 1 (3): 462–478. DOI: https://doi.org/10.1021/acsest....
 
18.
Hossain S.M., Luckham R.E., McFadden M.J., Brennan J.D. 2009. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Analytical Chemistry 81 (21): 9055–9064. DOI: https://doi.org/10.1021/ac9017....
 
19.
Hou J., Dong J., Zhu H., Teng X., Ai S., Mang M. 2015. A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots. Biosensors & Bioelectronics 68: 20–26. DOI: https://doi.org/10.1016/j.bios....
 
20.
Huang L., Sun D.W., Pu H., Wei Q., Luo L., Wang J. 2019. A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable γ-MnOOH nanozyme for sensitive detection of organophosphorus pesticides. Sensors and Actuators B: Chemical 290 (1): 573–580. DOI: https://doi.org/10.1016/j.snb.....
 
21.
Jain D., Kaur B.P., Pasricha R. 2019. Design of microcontroller based cost effective portable detection circuit for pesticide recognition. International Journal of Innovative Technology and Exploring Engineering 9: 2228–2232. DOI: 10.35940/ijitee.A4793.119119.
 
22.
Kaur J., Singh P.K. 2020. Enzyme-based optical biosensors for organophosphate class of pesticide detection. Physical Chemistry Chemical Physics Journal 22 (27): 15105–15119. DOI: https://doi.org/10.1039/D0CP01....
 
23.
Kavruk M., Ozalp V.C., Oktem H.A. 2013. Portable bioactive paper-based sensor for quantification of pesticides. Journal of Analytical Methods in Chemistry 2013: 932946. DOI: https://doi.org/10.1155/2013/9....
 
24.
Khaled E., Kame M.S., Hassan H.N.A., Abdel-Gawad H., Aboul-Enein H.Y. 2014. Performance of a portable biosensor for the analysis of ethion residues. Talanta 119: 467–472. DOI: 10.1016/j.talanta.2013.11.001.
 
25.
Khaled E., Kamel M.S., Hassan H.N.A., Malhat F.M., Abdel-Gawad H. 2015. Rapid detection of Methomyl and organophosphorous pesticides with portable potentiometric biosensor. Transactions of the Association for Computational Linguistics 5: 117–126. DOI: https://doi.org/10.1080/222979....
 
26.
Kim H.J., Kim Y., Park S.J., Kwon C., Noh H. 2018. Development of colorimetric paper sensor for pesticide detection using competitive-inhibiting reaction. Biochip Journal 12: 326–331. DOI: https://doi.org/10.1007/s13206....
 
27.
Kovida, Sharma V., Koner A.L. 2020. Rapid on-site and nakedeye detection of common nitro pesticides with ionic liquids. The Analyst 145: 4335–4340. DOI: https://doi.org/10.1039/d0an00....
 
28.
Kumar D.N., Rajeshwari A., Alex S.A., Sahu M., Raichur A.M., Chandrasekaran N., Mukherjee A. 2015. Developing acetylcholinesterase-based inhibition assay by modulated synthesis of silver nanoparticles: Applications for sensing of organophosphorus pesticides. RSC Advances 5 (76): 61998–62006.
 
29.
Li H., Guo J., Pinga H., Liu L., Zhang M., Guan F., Sun C., Zhang Q. 2011. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe. Talanta 87: 93–99. DOI: http://dx.doi.org/10.1016/j.ta....
 
30.
Li X., Cui H., Zeng Z. 2018. A simple colorimetric and fluorescent sensor to detect organophosphate pesticides based on adenosine triphosphate modified gold nanoparticles. Sensors 18: 4302. DOI: https://doi.org/10.3390/s18124....
 
31.
Lin D., Li L., Song X., Xu S., Zhang Q., Hu Z., Yang L., Jiang C. 2021. “Light Up” fluorescence visual sensitive detection of organophosphorus with a smartphone-based platform utilizing a composite rhodamine B-Ag@Au nanoprobe. ACS Sustainable Chemistry & Engineering 9 (43): 14579–14587. DOI: https://doi.org/10.1021/acssus....
 
32.
Liu Y., Li S., Ni Z., Qu M., Zhong D., Ye C. 2016. Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils. Science of the Total Environment 542: 620–628. DOI: https://doi.org/10.1016/j.scit....
 
33.
Mane P.C., Shinde M.D., Varma S., Chaudhari B.P., Fatehmulla A., Shahabuddin M., Amalnerkar D.P., Aldhafiri A.M., Chaudhari R.D. 2020. Highly sensitive label-free biointerfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Nature 10: 4198. DOI: https://doi.org/10.1038/s41598....
 
34.
Mei Q., Jing H., Li Y., Yisibashae W., Chen J., Li B.N., Zhang Y. 2016. Smartphone based visual and quantitative assays on upconversional paper sensor. Biosensors & Bioelectronics 75: 427–432. DOI: https://doi.org/10.1016/j.bios....
 
35.
Naushad M., Sharma G., Alothmanab Z.A. 2019. Photodegradation of toxic dye using Gum Arabic-crosslinkedpoly( acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel. Journal of Cleaner Production. 241: 118263. DOI: https://doi.org/10.1016/j.jcle....
 
36.
Nouanthavong S., Nacapricha D., Henry C.S., Sameenoi Y. 2016. Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst 141: 1837–1846. DOI: https://doi.org/10.1039/C5AN02....
 
37.
Oujji N.B., Bakas I., Istamboulie G., Ait-Ichou I., Ait-Addi E., Rouillon R., Noguer T. 2012. Acetylcholinesterase immobilized on magnetic beads for pesticides detection: application to olive oil analysis. Sensors 12 (6): 7893–7904. DOI: 10.3390/s120607893.
 
38.
Popp J., Peto K., Nagy J. 2013. Pesticide productivity and food security: A Review. Agronomy for Sustainable Development 33: 243–255. DOI: https://doi.org/10.1007/s13593....
 
39.
Purushottam T., Sharma V.P., Srivastava L.P., Sarika M. 2014. Determination of organophosphorus pesticide residues in wheat and rice by QuEChERS method. Journal of Environment Research & Development 8 (4):859–866.
 
40.
Singh R., Kumar N., Mehra R., Kumar H., Singh V.P. 2020. Progress and challenges in the detection of residual pesticides using nanotechnology based colorimetric techniques. Trends in Environmental Analytical Chemistry 26: e00086. DOI: 10.1016/j.teac.2020.e00086.
 
41.
Singh S., Tripathi P., Kumar N., Nara S. 2017. Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosensors & Bioelectronics 92: 280-286. http://dx.doi.org/10.1016/j.bi....
 
42.
Sun Z., Tian L., Guo M., Xu X., Li Q., Weng H. 2017. A doublefilm screening card for rapid detection of organophosphate and carbamate pesticide residues by one step in vegetables and fruits. Food Control 81: 23–29. DOI: https://doi.org/10.1016/j.food....
 
43.
Tripathy V., Saha A., Patel D.J., Basak B.B., Shah P.G., Kumar J. 2016. Validation of a QuEChERS-based gas chromatographic method for analysis of pesticide residues in Cassia angustifolia (senna). Journal of Environment Science & Health Part B 51: 508–518. DOI: 10.1080/03601234.2016.1170544.
 
44.
Truong P.L., Duyen V.T.C., Toi V.V. 2021. Rapid detection of Tebuconazole based on aptasensor and aggregation of silver nanoparticles. Journal of Nanomaterials 2021, 10 pp. DOI: https://doi.org/10.1155/2021/5....
 
45.
Umapathi R., Sonwal S., Lee M.J., Rani G.M., Lee E.S., Jeon T.J., Kang S.M., Oh M.H., Huh Y.S. 2021. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coordination Chemistry Review 446: 214061. DOI: https://doi.org/10.1016/j.ccr.....
 
46.
Wabaidur S.M., Khan M.A., Siddiqui M.R., Otero M., Jeon B.H., Alothman Z.A., Hakami A.A.H. 2020. Oxygenated functionalities enriched MWCNTs decorated with silica coated spinel ferrite – A nanocomposite for potentially rapid and efficient de-colorization of aquatic environment. Journal of Molecular Liquids 317: 113916. DOI: https://doi.org/10.1016/j.moll....
 
47.
Wu S., Li D., Wang J., Zhao Y., Dong S., Wang X. 2017a. Gold nanoparticles dissolution based colorimetric method for highly sensitive detection of organophosphate pesticides. Sensors and actuators B: Chemical 238: 427–433. DOI: https://doi.org/10.1016/j.snb.....
 
48.
Wu Y., Sun Y., Xiao F., Wu Z., Yu R. 2017b. Sensitive inkjet printing paper-based colormetric strips for acetylcholinesterase inhibitors with indoxyl acetate substrate. Talanta 162: 174-179. doi: 10.1016/j.talanta.2016.10.011.
 
49.
Xu X.Y., Yan B., Lian X. 2018. Wearable glove sensor for noninvasive organophosphorus pesticides detection based on double-signal fluorescence strategy. Nanoscale 10: 13722–13729. DOI: https://doi.org/10.1039/C8NR03....
 
50.
Yan X., Li H., Li Y., Su X. 2014. Visual and fluorescent detection of acetamiprid based on the inner filter effect of gold nanoparticles on ratiometric fluorescence quantum dots. Analytica Chimica Acta 852: 189–195. DOI: https://doi.org/10.1016/j.aca.....
 
51.
Yao T., Liua A., Liu Y., Weic M., Wei W., Liua S. 2019. Ratiometric fluorescence sensor for organophosphorus pesticide detection based on opposite responses of two fluorescence reagents to MnO2 nanosheets. Biosensors & Bioelectronics 145: 111705. DOI: https://doi.org/10.1016/j.bios....
 
52.
Zhang C., Zhang K., Zhao T., Liu B., Wang Z., Zhang Z. 2017. Selective phosphorescence sensing of pesticide based on the inhibition of silver(I) quenched ZnS:Mn2+ quantum dots. Sensors and Actuators B: Chemical 252: 1083–1088. DOI: http://dx.doi.org/10.1016/j.sn....
 
53.
Zhang Q., Zhang Z., Xu S., Da L., Lin D., Jiang C. 2022. Enzymefree and rapid visual quantitative detection for pesticide residues utilizing portable smartphone integrated paper sensor. Journal of Hazardous Materials 436: 129320. DOI: 10.1016/j.jhazmat.2022.129320.
 
54.
Zhao X., Kong D., Jin R., Li H., Yan X., Liu F., Sun P., Gao Y., Lu G. 2019. On-site monitoring of thiram via aggregation-induced emission enhancement of gold nanoclusters based on electronic-eye platform. Sensors & Actuators: B. Chemical 296: 126641. DOI: https://doi.org/10.1016/j.snb.....
 
eISSN:1899-007X
ISSN:1427-4345