ORIGINAL ARTICLE
Semisynthetic compounds for controlling Colletotrichum lindemuthianum on bean seeds
More details
Hide details
1
Department of Crop Protection, Federal University of Pelotas, Jardim América, 96010-900, Pelotas, Brazil
2
Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Taufik Germano, 96503-205, Cachoeira do Sul, Brazil
These authors had equal contribution to this work
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-01-27
Acceptance date: 2024-03-01
Online publication date: 2024-06-04
Corresponding author
Giovani Leone Zabot
Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),
Taufik Germano, 96503-205, Cachoeira do Sul, Brazil
Journal of Plant Protection Research 2024;64(2):200-208
HIGHLIGHTS
- Phenyl Se Citronellal has high potential in controlling Colletotrichum lindemuthianum
- Phenyl Se Citronellal and Phenyl S Citral do not affect the physiological quality of bean seeds
- Semisynthetic compounds in seed treatment are an alternative to plant disease management
KEYWORDS
TOPICS
ABSTRACT
Anthracnose caused by Colletotrichum lindemuthianum is one of the main diseases that affect the bean crop. The use of semisynthetic compounds for controlling anthracnose aims at providing a higher balance to the ecosystem and a lower environmental impact. Based on this context, the objective of this work was: a) to carry out the prospection of compounds such as Phenyl S Citral, Phenyl Se Citronellal, and Citral at concentrations of 1, 0.5, 0.25, 0.125, 0.0625, 0.0312, 0.0156, 0.0078, and 0.0039%, which were modified from the essential oil of citronella and lemongrass, for controlling C. lindemuthianum; b) to evaluate the initial performance of seedlings and treat the incidence of C. lindemuthianum in bean seeds with Phenyl S Citral and Phenyl Se Citronellal at concentrations of 0.125 and 0.0625%. Phenyl Se Citronellal at 0.5% controlled 100% of mycelial growth and Phenyl S Citral at 0.5 and 1% controlled more than 50% of mycelial growth of C. lindemuthianum. The treatment with Phenyl S Citral and Phenyl Se Citronellal did not affect the physiological quality of bean seeds while increasing seedling development when using the 0.0625% concentration of Phenyl Se Citronellal. Treatment with Phenyl Se Citronellal at both concentrations decreased the incidence of C. lindemuthianum infection.
ACKNOWLEDGEMENTS
The authors would like to thank the Coordination
for the Improvement of Higher Education Personnel
(CAPES), the National Council of Technological and
Scientific Development (CNPq: 404308/2023-6), and
the Research Support Foundation of the State of Rio
Grande do Sul (FAPERGS: 21/2551-0000683-8). GLZ
(308067/2021-5) wishes to thank CNPq for the productivity
grant.
RESPONSIBLE EDITOR
Ewa Moliszewska
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (23)
1.
Aguiar C.E., Bertuzzi E.C., Deuner C., Meneghello G.E., Campos E.J., Kerchner A.C. 2017. Physiological performance of hybrid corn seeds submitted to treatment with insecticide, fungicide and nutrients. Revista de Ciências Agrárias 41: 348–355. DOI:
https://doi.org/10.19084/RCA17....
2.
Brun T., Rabuske J.E., Luft L., Confortin T.C., Todero I., Aita B.C., Zabot G.L., Mazutti M.A. 2022. Powder containing biomolecules from Diaporthe schini for weed control. Environmental Technology 43: 2135–2144. DOI:
https://doi.org/10.1080/095933....
3.
Calderón-Santoyo M., Iñiguez-Moreno M., Ragazzo-Sánchez J.A. 2022. Microencapsulation of Citral and its antifungal activity into pectin films. Biointerface Research in Applied Chemistry 12: 7488–7502. DOI:
https://doi.org/10.33263/BRIAC....
4.
Confortin T.C., Todero I., Luft L., Schmaltz S., Ferreira D.F., Barin J.S., Mazutti M.A., Zabot G.L., Tres M.V. 2021. Extraction of bioactive compounds from Senecio brasiliensis using emergent technologies. 3 Biotech 6: 284. DOI:
https://doi.org/10.1007/s13205....
5.
Confortin T.C., Todero I., Soares J.F., Luft L., Brun T., Rabuske J.E., Nogueira C.U., Mazutti M.A., Zabot G.L., Tres M.V. 2019. Extracts from Lupinus albescens: antioxidant power and antifungal activity in vitro against phytopathogenic fungi. Environmental Technology 40: 1668–1675. DOI:
https://doi.org/10.1080/095933....
6.
da Silva S.G., Sant'Ana J., Jahnke S.M., dos Santos C.D.R. 2023. Effects of essential oils from the Brazilian pepper tree, eucalyptus and citronella on brassica aphids Brevicoryne brassicae and Myzus persicae (Hemiptera: Aphididae) and their parasitoid Diaeretiella rapae (Hymenoptera: Braconidae). Journal of Plant Protection Research 63: 286–296. DOI:
https://doi.org/10.24425/jppr.....
7.
Dangol S., Poudel D.K., Ojha P.K., Maharjan S., Poudel A., Satyal R., Rokaya A., Timsina S., Dosoky N.S., Satyal P., Setzer W.N. 2023. Essential oil composition analysis of Cymbopogon species from eastern nepal by GC-MS and chiral GC-MS, and antimicrobial activity of some major compounds. Molecules 28: 543. DOI:
https://doi.org/10.3390/molecu....
8.
de Araújo A.C., Toledo E.D., Soares W.R.O. 2018. Alternative products in control of Colletotrichum spp. isolated from mango and banana. Cientific – Multidisciplinary Journal 5: 104–112. DOI:
https://doi.org/10.29247/2358-....
9.
Lenardão E.J., Silva W.P.D., Jacob R.G., Maia D.S.V., Golbeck C.J., Fonseca S.F. 2015. Semi-synthetic compounds as antimicrobial agents in food preservation. Formatex 1 :576–583.
10.
Marcenaro D., Valkonen J.P.T. 2016. Seedborne pathogenic fungi in common bean (Phaseolus vulgaris cv. INTA Rojo) in Nicaragua. Plos One 11: 1–18. DOI:
https://doi.org/10.1371/journa....
11.
Mota S.F., Barcelos Q.L., Dias M.A., Souza E.A. 2016. Variability of Colletotrichum spp in common bean. Genetics and Molecular Research 7: 15027176. DOI:
https://doi.org/10.4238/gmr.15....
12.
Nabi N., Nabi A., Fayaz T., Lateef I., Nisa Q., Bashir A., Rashid Z., M.D. S., H. I., Shah R.A., Bhat Z.A., Masoodi K.Z., Khan I., Rashid R., Padder B.A. 2024. Pathogenically altered Colletotrichum lindemuthianum transformants help in understanding the biochemical defense and colonization dynamics in Phaseolus vulgaris. Physiological and Molecular Plant Pathology 129: 102208. DOI:
https://doi.org/10.1016/j.pmpp....
13.
Padder B.A., Sharma P.N., Awale H.E., Kelly J.D. 2017. Colletotrichum lindemuthianum, the causal agent of bean anthracnose. Journal of Plant Pathology 99: 317–330. DOI:
https://www.jstor.org/stable/4....
14.
Pereira H.S., Faria L.C., Wendland A., Costa J.G.C.C., Souza T.L.P.O., Melo L.C. 2018. Genotype by environment interaction for disease resistance and other important agronomic traits supporting the indication of common bean cultivars. Euphytica 214: 1–11. DOI:
https://doi.org/10.1007/s10681....
15.
Quintana-Rodriguez E., Rivera-Macias L.E., Adame-Alvarez R.M., Torres J.M., Heil M. 2018. Shared weapons in fungus-fungus and fungus-plant interactions? Volatile organic compounds of plant or fungal origin exert direct antifungal activity in vitro. Fungal Ecology 33: 115–121. DOI:
https://doi.org/10.1016/j.fune....
16.
Rabuske J.E., Muniz M.F.B., Brun T., Saldanha M.A., Sarzi J.S., Savian L.G., Walker C., Rolim J.M., Zabot G.L., Mazutti M.A. 2023. Trichoderma asperellum in the biocontrol of Lasiodiplodia theobromae and Pseudofusicoccum kimberleyense. Journal of Plant Protection Research 63: 488–498. DOI:
https://doi.org/10.24425/jppr.....
17.
Ramos K., Andreani Junior R., Kozusny-Andreani D.I. 2016. Essential and vegetal oils in the in vitro control of Colletotrichum gloeosporioides. Revista Brasileira de Plantas Medicinais 18: 605–612. DOI:
https://doi.org/10.1590/1983-0....
18.
Rong-Yu L., Xiao-Mao W., Xian-Hui Y., You-Hua L., Ming L. 2014. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea. Pesticide Biochemistry and Physiology 118: 19–25. DOI:
https://doi.org/10.1016/j.pest....
19.
Schmaltz S., Silva A.S., Ninaus R.G., Guedes J.V.C., Zabot G.L., Tres M.V., Mazutti M.A. 2023. Biomolecules in modern and sustainable agriculture. 3 Biotech 13: 70. DOI:
https://doi.org/10.1007/s13205....
20.
Sefu G., Satheesh N., Berecha G. 2015. Effect of essential oils treatment on anthracnose (Colletotrichum gloeosporioides) disease development, quality and shelf life of mango fruits (Mangifera indica L). American-Eurasian Journal of Agricultural & Environmental Science 15: 2160–2169. DOI:
http://dx.doi.org/10.5829/idos....
21.
Sivalingam S., Sharmila D.J.S., Golla G., Arunachalam L., Singh T., Karthikeyan G., Shanthi A., Malaichamy K. 2024. Encapsulation of essential oil to prepare environment friendly nanobio-fungicide against Fusarium oxysporum f.sp. lycopersici: An experimental and molecular dynamics approachv. Colloids and Surfaces A: Physicochemical and Engineering Aspects 681: 132681. DOI:
https://doi.org/10.1016/j.cols....
22.
Stegmayer M.I., Álvarez N.H., Sager N.G., Buyatti M.A., Derita M.G. 2022. Evaluation of Pelargonium graveolens essential oil to prevent gray mold in rose flowers. Journal of Plant Protection Research 62: 145–152. DOI:
https://doi.org/10.24425/jppr.....
23.
Zhang L., Shi Y., Duan X., He W., Si H., Wang P., Chen S., Luo H., Rao X., Wang Z., Liao S. 2021. Novel Citral-thiazolyl hydrazine derivatives as promising antifungal agents against Phytopathogenic fungi. Journal of Agricultural and Food Chemistry 69: 14512–14519. DOI:
https://doi.org/10.1021/acs.ja....