ORIGINAL ARTICLE
 
KEYWORDS
TOPICS
ABSTRACT
There is an ongoing search for technologies that guarantee soybean productivity. Among them, the application of phytosanitary products stands out, since the sprayer is the most required implement during the agricultural production cycle and each error, in practice, represents a loss in the production process. With this in mind, the objective of this work was to evaluate the volume captured and the characteristics of the application in the different thirds of soybean plants with variations in hydraulic nozzles and spray volumes, as well as the use of electrification of the drops. To this end, a field experiment was conducted during the 2018/2019 summer harvest in an experimental area at the University of Rio Verde. The experimental design used was randomized blocks in a factorial scheme (3 × 4), with four repetitions, in which the first factor consisted of three variations of spray nozzles (simple fan, hollow cone and hollow cone with electrification of the drops). The second factor involved four application rates (50, 100, 150 and 200 l · ha–1). The variables evaluated were the number of drops per cm–2, percentage of coverage, volume median diameter (VMD) and the captured volume (μl · cm–2). According to the results, for the upper thirds, an increase in the application rate increased the volume of captured syrup. However, for the lower third, the factors evaluated did not interfere in this characteristic. The hydraulic tips influenced the density of droplets in the three thirds and the coverage only in the lower one. The increasing rates of application, increases the density of drops and percentage of coverage in the different thirds of the plants. The evaluated factors had no effect on the syrup distribution on the median abaxial surface of the leaves.
ACKNOWLEDGEMENTS
We wish to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), for financially supporting this project.
RESPONSIBLE EDITOR
Zbigniew Czaczyk
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (28)
1.
Baldin E.L.L., Cruz P.L., Morando R., Silva I.F., Bentivenha J.P.F., Tozin L.R.S., Rodrigues T.M. 2017. Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. Journal of Economic Entomology 110 (4): 1869–1876. DOI: 10.1093/jee/tox143.
 
2.
Bayer T., Costa I.F.D., Lenz G., Zemolin C., Marques L.N., Stefanelo M.S. 2011. Equipamento de pulverização aérea e taxas de aplicação de fungicida na cultura do arroz irrigado. [Spraying equipment and rates of fungicide application in irrigated rice]. Revista Brasileira de Engenharia Agrícola e Ambiental 15 (2): 192–198. DOI: https://doi.org/10.1590/S1415-....
 
3.
Belo M.S.S.P., Pignati W., Dores E.F.G.C., Moreira J.C.M., Peres F. 2012. Uso de agrotóxicos na produção de soja do Estado do Mato Grosso: um estudo preliminar de riscos ocupacionais e ambientais. [Pesticide use in soybean production in Mato Grosso state, Brazil: A preliminary occupational and environmental risk characterization]. Revista Brasileira Saúde Ocupacional 37 (125): 78–88. DOI: https://doi.org/10.1590/S0303-....
 
4.
Boschini L., Robinson L.C., Macedo Júnior E.K., Guimarães V.F.G. 2008. Avaliação da deposição da calda de pulverização em função da vazão e do tipo de bico hidráulico na cultura da soja. [Evaluation the spraying syrup deposition in function of the beak type and the flow, in soybean]. Acta Scientiarum. Agronomy 30 (2): 171–175. DOI: https://doi.org/10.4025/actasc....
 
5.
Chaim A., Camargo Neto J., Pessoa M.C.P.Y. 2006. Uso do programa computacional Gotas para avaliação da deposição de pulverização aérea sob diferentes condições climáticas. [Use of the gotas software for evaluation of the deposition of aerial spraying under different climatic conditions]. Research and Development Bulletin 39: 18.
 
6.
Climate data. 2020. Climate Rio Verde. Available on: https://pt.climate-data.org/am.... [Accessed on: 13 July 2020].
 
7.
Cunha J.P.A.R., Marques R.S., Alves G.S. 2016. Deposição da calda na cultura da soja em função de diferentes pressões de trabalho e pontas de pulverização. [Spray deposition on soybean crop as a function of different service pressures and spray nozzles]. Revista Ceres 63 (6): 761–768. DOI: https://doi.org/10.1590/0034-7....
 
8.
Cunha J.P.A.R., Reis E.F., Santos R.O. 2006. Controle químico de ferrugem asiática da soja em função de ponta de pulverização e de volume de calda. [Chemical control of Asian soybean rust due to spray tip and spray volume]. Ciência Rural 36 (5): 1360–1366. DOI: https://doi.org/10.1590/S0103-....
 
9.
Czaczyk Z., Kruger G., Hewitt A. 2012. Droplet size classification of air induction flat fan nozzles. Journal of Plant Protection Research 52 (4): 415–420. DOI: https://doi.org/10.2478/10045-....
 
10.
Durão C.F., Boller W. 2017. Spray nozzles performance in fungicides applications for Asian soybean rust control. Engenharia Agrícola 37 (4): 709–716. DOI: http://dx.doi.org/10.1590/1809....
 
11.
Farinha J.V., Martins D., Costa N.V., Domingos V.D. 2009. Deposição da calda de aplicação em cultivares de soja no estádio R1. Ciência Rural 39 (6): 1738–1744. DOI: https://doi.org/10.1590/S0103-....
 
12.
Fehr W.R., Caviness C.E. 1997. Stages of Soybean Development. Ames: Iowa State University, USA, 12 pp. (Special Report, 80).
 
13.
Fritz B.K., Hoffman W.C., Czaczyk Z., Bagley W., Kruger G., Henry R. 2012. Measurement and classification methods using the ASAE S572.1 reference nozzles. Journal of Plant Protection Research 52 (4): 447–457. DOI: https://doi.org/10.2478/v10045....
 
14.
Furlan S.H., Carvalho F.K., Antuniassi U.R. 2018. Strategies for the control of Asian soybean rust (Phakopsora pachyrhizi) in Brazil: fungicide resistance and application efficacy. Outlooks on Pest Management 29 (3): 120–123. DOI: https://doi.org/10.1564/v29_ju....
 
15.
Law S.E. 2014. Electrostatically charged sprays. In: “Pesticide Application Methods” (G.A. Matthews, ed.). 4th ed. Chichester: John Wiley & Sons, USA, 545 pp. DOI: https://doi.org/10.1002/978111....
 
16.
Negrisoli M.M., Raetano C.G., Souza D.M., Souza F.M.S., Bernardes L.M., Bem Júnior L., Rodrigues D.M., Sartori M.M.P. 2019. Performance of new flat fan nozzle design in spray deposition, penetration and control of soybean rust. European Journal of Plant Pathology 155 (7): 1–13. DOI: http://doi.org/10.1007/s10658-....
 
17.
Nidera. 2020. NS 7709 IPRO. Available on: http://www.niderasementes. com.br/produto/ns-7709-ipro.aspx. [Accessed on: 13 July 2020].
 
18.
Omoto P.H., Tomaz R.S., Prado E.P. 2017. Quantificação dos depósitos da pulverização em função da técnica de aplicação na cultura da soja. [Quantification of spray deposits as a function of soybean application technique]. Fórum Ambiental da Alta Paulista 13 (7): 120–134. DOI: http://dx.doi.org/10.17271/198....
 
19.
Patel M.K., Praveen B., Sahoo H.K., Patel B., Kumar A., Singh M., Nayak M.K., Rajan P. 2017. An advance air-induced air-assisted electrostatic nozzle with enhanced performance. Computers and Electronics in Agriculture 135 (4): 280–288. DOI: https://doi.org/10.1016/j.comp....
 
20.
Sasaki R.S., Teixeira M.M., Fernandes H.C., Monteiro P.M.B., Rodrigues D.E. 2013. Deposição e uniformidade de distribuição de calda de aplicação em plantas de café utilizando a pulverização eletrostática. [Deposition and uniformity of spray syrup distribution in coffee plants using electrostatic spraying]. Ciência Rural 43 (9): 1605–1609. DOI: https://doi.org/10.1590/S0103-....
 
21.
Scudeler F., Raetano C.G. 2006. Spray deposition and losses in potato as a function of air-assistance and sprayer boom angle. Scientia Agricola 63 (6): 515–521. DOI: https://doi.org/10.1590/S0103-....
 
22.
Silva J.E.R., Cunha J.P.A.R., Nomelini Q.S.S. 2014a. Deposição de calda em folhas de cafeeiro e perdas para o solo com diferentes taxas de aplicação e pontas de pulverização. [Deposition of spray applied in coffee leaves with different rates and spray nozzles]. Revista Brasileira de Engenharia Agrícola e Ambiental 18 (12): 1302–1306. DOI: https://doi.org/10.1590/1807-1....
 
23.
Silva B.M.B., Ruas R.D.A., Sichocki D., Dezordi L.R., Caixeta L.F. 2014b. Deposição da calda de pulverização aplicada com pontas de jato plano em diferentes partes da planta de soja (Glycine max) e milho (Zea mays). [Spray spray deposition applied with flat spray tips to different parts of the soybean plant (Glycine max) and corn (Zea mays)]. Engenharia na Agricultura 22 (1): 17–27. DOI: https://doi.org/10.13083/reven....
 
24.
Souza D.M., Raetano C.G., Moreira C.A.F., Burno R.C.O.F., Carvalho M.M. 2019. Effects of news sowing arrangements and air assistance on fungicide spray distribution on soybean crop. Acta Scientiarum. Agronomy 41 (1): e42700. DOI: https://doi.org/10.4025/actasc....
 
25.
Tavares R.M., Silva J.E.R., Alves G.S., Alves T.C., Silva S.M., Cunha J.P.A.R. 2017. Tecnologia de aplicação de inseticidas no controle da lagarta-do-cartucho na cultura do milho. [Insecticide application technology on fall armyworm control in corn]. Revista Brasileira de Milho e Sorgo 16 (1): 30–42. DOI: https://doi.org/10.18512/1980-....
 
26.
Van Zyl J.G., Fourie P.H., Schutte G.C. 2013. Spray deposition assessment and benchmarks for control of Alternaria brown spot on mandarin leaves with copper oxychloride. Crop Protection 46 (4): 80–87. DOI: https://doi.org/10.1016/j.crop....
 
27.
Viana R.G., Ferreira L.R., Ferreira M.C., Teixeira M.M., Rosell J.R., Tuffi-Santos L.D., Machado A.F.L. 2010. Distribuição volumétrica e espectro de gotas de pontas de pulverização de baixa deriva. [Volumetric distribution and droplet spectrum by low drift spray nozzles]. Planta Daninha 28 (2): 439–446. DOI: https://doi.org/10.1590/S0100-....
 
28.
Zhou Y., Qi L., Jia S., Zheng X., Meng X., Tang Z., Shen C. 2012. Development and application prospects of pneumatic electrostatic sprayer in orchard. Asian Agricultural Research 4 (1): 78–80. DOI: 10.22004/ag.econ.133110.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top