• Sorghum produced allelopathic compounds, including phenols and sorgoleone which exhibits a phytotoxic on weeds. The aim of the study was to evaluate the content of phenols and sorgoleone in the early stages of plant development among varieties Rona 1, KWS Freya, KWS Juno, KWS Sammos, Farmsorgo 180, GK Aron, PR 845F, Sucrosorgo 506 and PR849F.
Sorghum produces allelopathic compounds, including total phenolic compounds and sorgoleone, which exhibit a phytotoxic effect on weeds. The field study, carried out in 2016-2017, was designed as an one-factor experiment, in the randomized block design, in four replications, with Sucrosorgo 506, Rona 1, KWS Freya, KWS Juno, and KWS Sammos, to assess the impact of allelochemicals on weeds. Weed infestation was determined at the beginning of July. Individual weed species were collected from two random places in each plot and weighed. The aim of the laboratory study was to evaluate the total content of phenolic compounds, and sorgoleone in the early stages of plant development (5, 10, and 15 days after emergence) in varieties Rona 1, KWS Freya, KWS Juno, KWS Sammos, Farmsorgo 180, GK Aron, PR 845F, Sucrosorgo 506 and PR849F. The total content of phenolic compounds was determined using the colorimetric method, and the sorgoleone HPLC technique on a Flexar chromatographic set. The highest value of sorgoleone was observed in 15-day-old seedlings of KWS Juno, the lowest in 5-day-old seedlings of Sucrosorgo 506, the highest levels of total phenolic compounds in 5-day-old seedlings of PR 845F, the lowest in 15-day-old seedlings of Farmsorgo 180. The results do not fully confirm the beneficial effect of allelopathic compounds on reducing weed infestation, however, it is important to emphasize the diversity of cultivars used. The statistically insignificant results indicated that most varieties of sorghum plants do not exhibit a significant decrease in yield.
The authors are grateful for the support provided by the Poznan University of Life Sciences, Poland including technical support and materials used for field experiments.
Tomasz Sekutowski
The authors have declared that no conflict of interests exist.
Cholajda K., Matysiak K., Kierzek R., Krzymińska J. 2021. Biological weed control – prospects and limitations. Progress in Plant Protection 61(2): 103–112. DOI: 10.14199/ppp-2021-011.
Dayan F.E. 2006. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224: 339–346. DOI: 10.1007/s00425-005-0217-5.
Farooq O., Atique-Ur-Rehman, Sarwar N., Hussain M., Wasaya A., Naeem M., Iqbal M.M., Khaliq A. 2018. Herbicidal potential of sorghum and brassica against the weeds of cotton. Planta Daninha 36: e018185592.
Fetting C. 2020. The European green deal. ESDN Report. December 2020, ESDN Office, Vienna.
Głąb L., Sowiński J., Bough R., Dayan F.E. 2017. Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. Advances in Agronomy 145: 43–95. DOI: http://dx.doi.org/10.1016/bs.a....
Haliniarz M., Gawęda D., Nowakowicz-Dębek B., Najda A., Chojnacka S., Łukasz J., Wlazło Ł., Różańska-Boczula M. 2020. Evaluation of the weed infestation, grain health, and productivity parameters of two spelt wheat cultivars depending on crop protection intensification and seedling densities. Agriculture 10: 229. DOI: https://doi.org/10.3390/agricu....
Hussain M.I., Danish S., Sanchez-Moreiras A.M., Vicente O., Jabran K., Chaudhry U.K., Branca F., Reigosa M.J. 2021. Unraveling sorghum allelopathy in agriculture: concepts and implications. Plants 10: 1795.
Idziak R., Skrzypczak W., Waligora H., Woznica Z. 2013. The effect of mesotrione applied with adjuvants on weed control efficacy and forage sorghum tolerance. Turkish Journal of Agriculture and Forestry 37: 265–270. DOI: 10.3906/tar-1203-29.
Jassim A.A., Al-khaldy R.A.A., Mohmed A.S. 2022. Effect of three growth stages of sorghum residues on Lolium temulentum weeds associated with the barley crop. IOP Conference Series: Earth and Environmental Science 1060: 012112. DOI: 10.1088/1755-1315/1060/1/012112.
Khamare Y., Chen J., Marble S.C. 2022. Allelopathy and its application as a weed management tool: a review. Fronties in Plant Science 13: 1034649. DOI: 10.3389/fpls.2022.1034649.
Kostina-Bednarz M., Płonka J. 2023. Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Reviews in Environmental Science and Biotechnology 22: 471–504. https://doi.org/10.1007/s11157....
Le T.H., Jia W.Q., Won O.J., Oh T-K., Shinogi Y., Park K.W., Lee J.J. 2018. Weed control efficacy of sorghum shoot extract extracted with various solvents. Journal-Faculty of Agriculture Kyushu University 63 (2): 399–404. DOI: 10.5109/1955661.
Li J., Zhang Q., Hu W., Yang X. 2015. Stability of phenolic acids and the effect on weed control activity. Journal of Korean Society for Applied Biological Chemistry 58 (6): 919–926. DOI 10.1007/s13765-015-0124-9.
McKinley B.A., Casto A.L., Rooney W.L., Mullet J.E. 2018. Developmental dynamics of stem starch accumulation in Sorghum bicolor. Plant Direct 2: 1–15. DOI: 10.1002/pld3.74.
Mohamed H.I., Fawzi E.M., Basit A., Kaleemullah Lone R., Sofy M.R. 2022. Sorghum: nutritional factors, bioactive compounds, pharmaceutical and application in food systems: a review. Phyton-International Journal of Experimental Botany 91 (7): 1303–1325. DOI: 10.32604/phyton.2022.020642.
Mwamahonje A., Maseta Z. 2018. Evaluation of yield performance of sorghum (Sorghum bicolor L. Moench) varieties in Central Tanzania. International Journal of Agronomy and Agricultural Research 13 (2): 8–14.
Noreen H., Semmar N., Farman M., McCullagh J.S.O. 2017. Measurement of total content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pacific Journal of Tropical Medicine 10 (8): 792–801. DOI: http://dx.doi.org/10.1016/j.ap....
Pan Z., Baerson S.R., Wang M., Bajsa-Hirschel J., Rimando A.M., Wang X., Nanayakkara N.P.D., Noonan B.P., Fromm M.E., Dayan F.E., Khan I.A., Duke S.O. 2018. A cytochrome P450 CYP71 enzyme expressed in Sorghum bicolor root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone. New Phytologist 218: 616–629. DOI: 10.1111/nph.15037.
Sarr P.S., Ando Y., Nakamura S., Deshpande S., Subbarao G.V. 2020. Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and archaea and determines the level of nitrification. Biology and Fertility of Soils 56: 145–166. DOI: https://doi.org/10.1007/s00374....
Sarr P.S., Nakamura S., Ando Y., Iwasaki S., Subbarao G.V. 2021. Sorgoleone production enhances mycorrhizal association and reduces soil nitrification in sorghum. Rhizosphere 17: 100283. https://doi.org/10.1016/j.rhis....
Saudy H.S., El-Bially M., Ramadan K.A., El-Nasr E.K.A., El-Samad G.A.A. 2021. Potentiality of soil mulch and sorghum extract to reduce the biotic stress of weed with enhancing yield and nutrient uptake of maize. Gesunde Pflanzen 73: 55–564. DOI: https://doi.org/10.1007/s10343....
Scavo A., Abbate C., Mauromicale G. 2019. Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant Soil 442: 23–48. DOI: https://doi.org/10.1007/s11104....
Smreczak B., Lachacz A. 2019. Soil types specified in the bonitation classification and their analogues in the sixth edition of the Polish Soil Classification. Soil Science Annual 70 (2): 115–136. DOI: 10.2478/ssa-2019-0011.
Sołtys D., Gniazdowska A., Bogatek R. 2010. Sorgoleone – the main allelopathic compound from sorghum. Kosmos 59 (3-4): 567–579.
Stefan L., Engbersen N., Schob C. 2021. Crop-weed relationships are context-dependent and cannot fully explain the positive effects of intercropping on yield. Ecological Applications 31 (4): e02311. DOI: 10.1002/eap.2311.
Tibugari H., Chiduza C., Mashingaidze A.B., Mabasa S. 2018. Quantification of sorgoleone in sorghum accessions from eight south African countries. South African Journal of Plant and Soil 1–10. DOI: https://doi.org/10.1080/025718....
Traore S., Lindquist J.L., Mason S., Martin A., Mortensen D.A. 2022. Comparative ecophysiology of grain sorghum and abutilion theophrasti in monoculture and in mixture. Weed Research 42 (1): 65–75. DOI: http://doi.org/10.1046./j.1365....
Uddin M.R., Won O.J., Pyon J.Y. 2010. Herbicidal effects and crop selectivity of sorgoleone, a sorghum root exudate under greenhouse and field conditions. Korean Journal of Weed Science 30 (4): 412–420. DOI: http://doi.org/10.5660/KJWS.20....
Waligóra H., Majchrzak L., Kostiw P. 2020. Evaluation of herbicide efficacy applied in sugar maize cultivation. [Ocena skuteczności chwastobójczej herbicydów stosowanych w uprawie kukurydzy cukrowej]. Fragmenta Agronomica 37(1): 13–19. DOI: 10.26374/fa.2020.37.2.
Weston L.A., Alsaadawi I., Baerson S.R. 2013. Sorghum allelopathy – from ecosystem to molecule. Journal of Chemical Ecology 39 (2): 142–153. DOI: 10.1007/s10886-013-0245-8.
Yar S., Khan E.A., Hussain I., Raza B., Abbas M.S., Munazza Z. 2020. Allelopathic influence of sorghum aqueous extracts and sorghum powder on germination indices and seedling vigor of hybrid corn and jungle rice. Planta Daninha 38: e020192192. DOI: 10.1590/S0100-83582020380100005.
Journals System - logo
Scroll to top