• Biological regulation of pea aphid populations using different products of organic origin.
  • Products of organic origin as an approach to improving the physiological state of plants.
  • Products of organic origin can be a successful alternative to conventional chemical control.
The perspective direction in the biological regulation of insect pest populations is the combined use of different products of organic origin including fungal biological control agents. Therefore, the present study was aimed to evaluate the efficacy of products of natural origin (Aminogreen 24, Nitrogreen, Foliamin and Naturalis − strain ATCC 74040 of entomopathogenic fungus Beauveria bassiana) and one synthetic insecticide − standard (deltamethrin + thiacloprid), applied alone and in a mixture in the control of Acyrthosiphon pisum in forage pea. The study was conducted in a field experiment during the period 2017−2020. Infestation by leaf aphids was estimated by calculating the cumulative insect -days (CID). It was found that the combination of Aminogreen 24 + Naturalis had the most pronounced decrease in CID among products over the years from 2017 to 2020 and the average for the period. The greatest, significant reduction in the number of aphids occurred on day 5 (F8.5 = 15.244; p < 0.033) and day 7 (F8.5 = 33.087; p < 0.037) after treatment. On the 14th day, the decrease in CID (57.4% decrease) statistically exceeded the Proteus 110 OD standard (55.3% decrease) (F8.5 = 49.841; p < 0.049). Good protection against A. pisum was also found with Naturalis and Nitrogreen + Naturalis. There was an additive effect between Naturalis and Aminogreen 24 throughout the entire study period. The ratio of chlorophyll a (Chl a) to chlorophyll b (Chl b) and the ratio of green pigments (Chl a + + Chl b) to carotenoids determined that plants treated with Aminogreen 24 + Naturalis and Naturalis had the best physiological state. The combination of Aminogreen 24 and Naturalis gave the largest, significant, increase in stem height, followed by Nitrogreen + Naturalis. The use of Naturalis, alone and in a combination with Aminogreen 24 and Nitrogreen can be a successful alternative to conventional chemical control.
Jolanta Kowalska
The authors have declared that no conflict of interests exist.
Abdulwahid A.N., Mohammadali M.T. 2021. Evaluation of the effectiveness of some pesticides and bioagents against Parlatoria date scale Parlatoria blanchardi Targ (Homoptera: Diaspididae) on date palm Phoenix dactylifera. IOP Conference Series Earth and Environmental Science 735 (1): 012031. DOI: 10.1088/1755-1315/735/1/012031.
Alizadeh E., Valizadegan O., Aramideh S., Safaralizadeh M.H., Sadeghi S.E. 2019. Evaluation of the effect of some biopesticides on alfalfa weevil larvae, Hypera postica (Gyllenhal.) in laboratory and field conditions. International Commission of Agricultural and Biosystems Engineering 21 (4): 161−168.
Altieri M.A., Nicholls C.I. 2003. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil and Tillage Research 72: 203−211.
Andreev R., Vasilev P. 2018. Efficacy ot chemical and biological insecticides against Hyalopterus pruni Geof. (Hemiptera: Aphididae). Scientific Works of Agricultural University, Plovdiv 61 (2): 193−198. (in Bulgarian).
Atanasova D., Vasilev P. 2020. Efficacy of some bioinsecticides against the Colorado potato beetle Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) under laboratory conditions. Journal of BioScience and Biotechnology 9 (2): 61−64.
Athanassiou C.G., Steenberg T. 2007. Insecticidal effect of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreaes) in combination with three diatomaceous earth formulations against Sitophilus granarius (L.) (Coleoptera: Curculionidae). Biological Control 40 (3): 411−416. DOI: https://doi.org/10.1016/j.bioc....
Bajad P.N., Pardeshi A.B. 2016. Bioinsecticidal effect of natural saponin containing plant extract of Acacia concinna on pulse beetle, Callosobruchus chinensis (Linn.) (Coleoptera: Bruchidae). International Journal of Current Research 8 (10): 39698−39701.
Benelli G., Canale A., Toniolo C., Higuchi A., Murugan K., Pavela R., Nicoletti M. 2017. Neem (Azadirachta indica): towards the ideal insecticide? Natural Product Research 31 (4): 369−386. DOI: 10.1080/14786419.2016.1214834.
Bidochka M.J., Khachatourians G.G. 1990. Identification of Beauveria bassiana extracellular protease as a virulence factor in pathogenicity toward the migratory grasshopper, Melanoplus sanguinipes. Journal of Invertebrate Pathology 56 (3): 362−370. DOI: https://doi.org/10.1016/0022-2....
Cox P.D., Wakefield M.E., Price N., Wildey K.B., Chambers J., Moore D., Aquino de Muro M., Bell B.A. 2016. The potential use of insect-specific fungi to control grain storage pests in empty grain stores. Available on: https://cereals.ahdb.org.uk/me... [Accessed: 19 July 2016].
Dannon H.F., Dannon A.E., Douro-Kpindou O.K., Zinsou A.V., Houndete A.T., Toffa-Mehinto J., Elegbede I.A.T., Olou B.D., Tamó M. 2020. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. Journal of Cotton Research 3: 1−24. DOI: https://doi.org/10.1186/s42397....
Draganova S., Simova S. 2010. Susceptibility of Tetranychus urticae Koch. (Acari: Tetranychidae) to isolates of entomopathogenic fungus Beauveria bassiana. Pesticides & Phytomedicine (Belgrade) 25 (1): 51−57. DOI: https://doi.org/10.2295/PIF100....
El Bassiouny H.M.S., Gobarah M.E., Ramadan A.A. 2005. Effect of antioxidants on growth, yield and favism causative agents in Vicia faba L. plants grown under reclaimed sandy soil. Journal of Agronomy 4 (4): 281−287. DOI: 10.3923/ja.2005.281.287.
Goławska S., Krzyżanowski R., Łukasik I. 2010. Relationship between aphid infestation and chlorophyll content in fabaceae species. Acta Biologica Cracoviensia Series Botanica 52 (2): 76−80. DOI: 10.2478/v10182-010-0026-4.
Grigorov S. 1980. Aphids and their Control. Zemizdat, Sofia, Bulgaria, 285 pp. (in Bulgarian).
Hasyim A., Setiawati W., Jayanti H., Hasan N., Syakir M. 2017. Identification and pathogenicity of entomopathogenic fungi for controlling the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). AAB Bioflux 29 (1): 34−46.
Hepburn H.R. 1985. Structure of the integument, p. 1−58. In: “Comprehensive Insect Physiology, Biochemistry and Pharmacology” (G.A. Kerkut, L.I. Gilbert, eds.). Vol. 3. Pergamon Press, Oxford, UK, 625 pp.
Kaiser D., Handschin S., Rohr R.P., Bacher S., Grabenweger G. 2020. Co-formulation of Beauveria bassiana with natural substances to control pollen beetles − synergy between fungal spores and colza oil. Biological Control 140: 104−106. DOI: https://doi.org/10.1016/j.bioc....
Kassimi A., El watik L. 2012. Comparison of insecticide effect of plant extracts on aphids of watermelon and green alfalfa. Sustainable Agriculture Research 1 (2): 301−307. DOI: 10.5539/sar.v1n2p301.
Lorencetti G.A.T., Potrich M., Mazaro S.M., Lozano E.R., Barbosa L.R., Schmatz Menezes M.J., Goncalves T.E. 2018. Beauveria bassiana Vuill. and Isaria sp. efficiency for Thaumastocoris peregrinus Carpintero & Dellapé (Hemiptera: Thaumastocoridae). Ciencia Florestal 28 (1): 403−411. DOI: https://doi.org/10.5902/198050....
Martins I., Silva R.J., Alencar J., Silva K.P., Cividanes F.J., Duarte R.T., Agostini L.T., Polanczyk R.A. 2014. Interactions between the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) on Myzus persicae (Hemiptera: Aphididae). Journal of Economic Entomology 107 (3): 933−938. DOI: http://dx.doi.org/10.1603/EC13....
Pavela R. 2009. Effectiveness of some botanical insecticides against Spodoptera littoralis Boisduvala (Lepidoptera: Noctudiae), Myzus persicae Sulzer (Hemiptera: Aphididae) and Tetranychus urticae Koch (Acari: Tetranychidae). Plant Protection Science 45 (4): 161−167. DOI: 10.17221/16/2009-PPS.
Prijović M., Drobnjaković T., Marčic D., Perić P., Petronijević S., Stamenković S. 2012. Efficacy of insecticides of natural origin in whitefly (Trialeurodes vaporariorum) control in tomato. Acta Horticulturae 960: 359−364. DOI: 10.17660/ActaHortic.2012.960.52.
Rondot Y., Reineke A. 2018. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biological Control 116: 82−90. DOI: https://doi.org/10.1016/j.bioc....
Ruppel R.F. 1983. Cumulative insect-days as an index of crop protection. Journal of Economic Entomology 76 (2,1): 375−377. DOI: https://doi.org/10.1093/jee/76....
Sytykiewicz H., Czerniewicz P., Sprawka I., Krzyzanowski R. 2013. Chlorophyll content of aphid-infested seedlings leaves of fifteen maize genotypes. Acta Biologica Cracoviensia Series Botanica 52 (2): 51−60. DOI: 10.2478/abcsb-2013-0023.
Tak J.-H., Isman M.B. 2015. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Scientific Reports 5: 12690. DOI: 10.1038/srep12690.
Wu S., Gao Y., Smagghe G., Xu X., Lei Z. 2016. Interactions between the entomopathogenic fungus Beauveria bassiana and the predatory mite Neoseiulus barkeri and biological control of their shared prey/host Frankliniella occidentalis. Biological Control 98: 43−51. DOI: https://doi.org/10.1016/j.bioc....
Xinzhi N., Quisenberry S.S., Heng-Moss T., Markwell J.P., Higley L.G., Baxendale F.P., Sarath G., Klucas R. 2002. Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Entomologia Experimentalis et Applicata 105: 43−53. DOI: 10.1023/A:1021754831841.
Zare M., Talaei-Hassanloui R., Fotouhifar K.B. 2014. Relatedness of proteolytic potency and virulence in entomopathogenic fungus Beauveria bassiana isolates. Journal of Crop Protection 3 (4): 425−434. Available on: http://jcp.modares.ac.ir/artic....
Zelenskii M., Mogileva G. 1980. Comparative evaluation of the photosynthetic ability of agricultural crops by the photochemical activity of chloroplasts. VIR, Leningrad, 1980, 36 pp. (in Russian).