ORIGINAL ARTICLE
Effect of 1,8-cineol on the biology and physiology of elm leaf beetle, Xanthogaleruca luteola (Col.: Chrysomelidae)
Gilda Adibmoradi 1, B-D
,  
Jalal Jalali Sendi 2, A,C-F  
,  
Siavosh Tirgari 1, E
,  
Sohrab Imani 1, E
,  
 
 
More details
Hide details
1
Agricultural Entomology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2
Plant Protection, University of Guilan, Rasht, Iran
3
Plant Protection, Islamic Azad University − Rasht Branch, Rasht, Iran
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Jalal Jalali Sendi   

Plant Protection, University of Guilan, Department of Plant Protection, 4199613776 Rasht, Iran
Submission date: 2018-03-22
Acceptance date: 2018-12-05
 
Journal of Plant Protection Research 2018;58(4):420–430
KEYWORDS
TOPICS
ABSTRACT
The effect of monoterpenoid 1,8-cineol on the toxicity and physiology of elm leaf beetle, Xanthogaleruca luteola Müller under laboratory conditions (26 ± 1°C, 65 ± 10% RH and 16L : 8D h) was investigated. Initially, LC30 and LC50 values of the constituent were estimated to be 23.5 ppm and 31.9 ppm for the last instar larvae after 48 h, respectively. Significant changes were observed in the values of relative growth rate (RGR), efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD), approximate digestibility (AD) and consumption index (CI) between control and treated larvae with 1,8-cineol. The amounts of protein, glucose and urea decreased in the treated larvae in comparison with control. Similar findings were observed in the activities of alkaline phosphatase and lactate dehydrogenase while the activities of glutathione S-transferase and esterase significantly increased in the treated larvae using CDNB and α-naphtyl acetates as the substrates. Morphological and histological changes brought about by 1,8-cineol in the present study are indicative of growth inhibition targeting specific organs such as those of reproduction. We believe that 1,8-cineol can be considered as a safe and environmentally friendly compound.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (67)
1. Aggarwal K.K., Tripathi A.K., Prajapati V., Kumar S. 2001. Toxicity of 1,8-cineol towards three species of stored product coleopterans. International Journal of Tropical Insect Science 21 (2): 155–160. DOI: 10.1017/S1742758400020208.
2. Akhtar Y., Isman M.B. 2004. Feeding responses of specialist herbivores to plant extracts and pure allelochemicals: effects of prolonged exposure. Entomologia Experimentalis et Applicata 111 (3): 201−208. DOI: 10.1111/j.0013-8703. 2004.00169.x.
3. Andrade-Neto M., Alencar J.W., Cunha A.H., Silveira E.R. 1994. Volatile constituents of Psidium pohlianum Berg, and Psidium guyanensis Pers. Journal of Essential Oil Research 6 (3): 299−800. DOI: 10.1080/10412905.1994.9698379.
4. Arabi F., Moharramipour S., Sefidkon F. 2008. Chemical composition and insecticidal activity of essential oil from Perovskia abrotanoides (Lamiaceae) against Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). International Journal of Tropical Insect Science 28 (3): 144–150. DOI: 10.1017/S1742758408079861.
5. Arthur D.R. 1962. Ticks and Disease. Pergamon Press, London, 444 pp.
6. Benzi V., Stefanazzi N., Ferrero A.A. 2009. Biological activity of essential oils from leaves and fruits of pepper tree (Schinus molle L.) to control rice weevil (Sitophilus oryzae L.). Chilean Journal of Agricultural Research 69 (2): 154−159.
7. Bessey O.A., Lowry O.H., Brock M.J. 1946. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. Journal of Biological Chemistry 164: 321–329.
8. Borowiec L., Sekerka L. 2010. Cassidinae. p. 64−65. In: “Catalogue Palearctic Coleoptera” (I. Löbl, A. Smetana, eds.). Vol. 6. Chrysomeloidea. Apollo Books, Wroclaw, 924 pp.
9. Bradford M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1–2): 248–254. DOI: 10.1016/0003-2697-(76)90527-3.
10. Chang W., Zachow K., Bentley D. 1993. Expression of epithelial alkaline phosphatase in segmentally iterated bands during grasshopper limb morphogenesis. Development 118 (2): 651–663. Available on: http://dev.biologists.org/cont... [Accessed: January 20, 2018].
11. Chapman R.F. 2013. The Insects. Structure and Function. (S.J. Simpson and A.E. Douglas, eds). 5th ed. Cambridge University Press, 929 pp.
12. Chiffelle I., Huerta A., Celis M., Araya J. 2013. Proximal analysis and insecticidal effects of extracts from pepper tree (Schinus molle) leaves on elm leaf beetle (Xanthogaleruca luteola) larvae. Industrial Crops and Products 43: 523−528. DOI: 10.1016/j.indcrop.2012.07.062.
13. Cloez M.S. 1870. Étude chimique de l’eucalyptol [The chemical study of eucalyptol]. Comptes Rendus 70: 687–690.
14. Cohen Y., Wang W., Bejn-Daniel B., Ben-Daniel Y. 2006. Extracts of Inula viscosa control downy mildew of grapes caused by Plasmopara viticola. Phytopathology 96 (4): 417–424. DOI: 10.1094/PHYTO-96-0417.
15. Da Silva M.N., Arruda M.S.P., Castro K.C.F., da Silva M.F., Das G.F. 2008. Limonoids of the phragmalin type from Swietenia macrophylla and their chemotaxonomic significance. Journal of Natural Products 71 (4): 1983–1987. DOI: 10.1021/np800312h.
16. Eguchi M. 1995. Alkaline phosphatase isozymes in insects and comparison with mammalian enzyme. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 111 (2): 151–162. DOI: 10.1016/0305-0491-(94)00248-S.
17. Etebari K., Bizhannia A.R., Sorati R., Matindoost L. 2007. Biochemical changes in haemolymph of silkworm larvae due to pyriproxyphen residue. Pesticide Biochemistry and Physiology 88 (1): 14–19. DOI: 10.1016/j.pestbp.2006.08.005.
18. Ford W.C.L., Candy D.J. 1972. The regulation of glycolysis in perfused locust flight muscle. Biochemical Journal 130 (4): 1101–1112.
19. Gunderson C.A., Samuelian J.H., Evans C.K., Brattsten L.B. 1985. Effects of the mint monoterpene pulegone on Sporoptera eridania (Lepidoptera: Noctuidae). Environmental Entomology 14 (6): 859−863. DOI: 10.1093/ee/14.6.859.
20. Guo S.S., Chun X.Y., Liang J.Y., Zhang W.J., Geng Z.F., Wang C.F., Du S.S., Lei N. 2015. Chemical composition and bioactivities of the essential oil from Etlingera yunnanensis against two stored product insects. Molecules 20 (9): 15735−15747. DOI: 10.3390/molecules200915735.
21. Gurr E. 1958. Methods of Analytical Histology and Histochemistry. Leonard Hill (Books) Ltd., London, 327 pp.
22. Habing W.H., Pabst M.J., Jakoby W.B. 1974. Glutathione S-transferases. The first step in mercapturic acid formation. Journal of Biological Chemistry 249: 7130−7139.
23. Han Z., Graham D., Moores I.D., Alan L. 1998. Devonshire association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypii Glover. Pesticide Biochemistry and Physiology 62: 164−171.
24. Hasheminia S.M., Sendi J.J., Jahromi K.T., Moharramipour S. 2011. The effect of Artemisia annua L. and Achillea millefolium L. crude leaf extracts on the toxicity, development, feeding efficiency and chemical activities of small cabbage Pieris rapae L. (Lepidoptera: Pieridae). Pesticide Biochemistry and Physiology 99 (3): 244–249. DOI: 10.1016/j.pestbp.2010.12.009.
25. Hayes J.D., Pulford D.J. 1995. The glutathione S-Transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews in Biochemistry and Molecular Biology 30 (6): 445–600. DOI: 10.3109/10409239509083491.
26. Huerta A., Chiffelle I., Puga K., Azúa F., Araya J. 2010. Toxicity and repellence of aqueous and ethanolic extracts from Schinusmolle on elm leaf beetle Xanthogaleruca luteola. Crop Protection 29 (10): 1118−1123. DOI: 10.1016/j.cropro.2010.04.010.
27. Huerta A., Chiffelle I., Puga K., Azúa F., Araya J. 2011. Life cycle of Xanthogaleruca luteola Mull (Col.: Chrysomelidae) in Santiago, Chile, and sex phenotype differentiation of adults. Boletín de sanidad vegetal. Plagas 37 (1): 57−64.
28. Isman M.B. 2008. Botanical insecticides: for richer, for poorer. Pest Management Science 64 (1): 8–11. DOI: 10.1002/ps.1470.
29. Kaplan L.A., Pesce A.J. 1996. Clinical Chemistry: Theory, Analysis, Correlation. 3rd. Mosby-Year Book Inc., St. Louis, 1064 pp.
30. Kaushik G., Satya S., Naik S.N. 2009. Food processing a tool to pesticide residue dissipation – A review. Food Research International 42 (1): 26–40. DOI: 10.1016/j.foodres.2008.09.009.
31. Khosravi R., Sendi J.J., Ghadamyari M. 2010. Effect of Artemisia annua L. on deterrence and nutritional efficiency of lesser mulberry pyralid (Glyphodes pylolais Walker) (Lepidoptera: Pyralidae). Journal of Plant Protection Research 50 (4): 423–428. DOI: 10.2478/jppr-2013-0036.
32. King J. 1965. The dehydrogenases or oxidoreductases. Lactate dehydrogenase. p. 83–93. In: “Practical Clinical Enzymology” (D. Van Nostrand, ed.). Elsevier, London.
33. Koul O., Tikku K., Saxena B.P. 1987. Ovarian dysfunction and morphometric defects induced by Origanum vulgare L. oil in the red cotton bugs. Current Science 59 (19): 1025−1028.
34. Kovar K.A., Gropper B., Friess D., Ammon H.P. 1987. Blood levels of 1,8-cineole and locomotor activity of mice after inhalation and oral administration of rosemary oil. Planta Medica 53 (4): 315−318. DOI: 10.1055/s-2006-962725.
35. Lee S., Petreson C.J., Coats J.R. 2003. Fumigation toxicity of monoterpenoids to several stored product insects. 39 (1): 77−85. DOI: 10.1016/S0022-474X(02)00020-6.
36. LeOra Software. 1987. Polo-Pc: A User Guide to Probit or Logit Analysis. LeOra Software, Berkeley, California.
37. Liška A., Rozman V., Brmež M., Rebekić A., Lucić P. 2015. Fumigant efficacy of 1,8-cineole and eugenol on the pupal stage of Tribolium castaneum (Herbst) (Insecta: Coleoptera: Tenebrionidae). Poljoprivreda/Agriculture 21 (2): 23−29. Available on: https://hrcak.srce.hr/150608 DOI: 10.18047/poljo.21.2.4.
38. López M.D., Pascual-Villalobos M.J. 2010. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products 31 (2): 284−288. DOI: 10.1016/j.indcrop.2009.11.005.
39. Madhua S.K., Shaukath A.K., Vijayan V.A. 2010. Efficacy of bioactive compounds from Curcuma aromatica against mosquito larvae. Acta Tropica 113 (1): 7–11. DOI: 10.1016/j.actatropica.2009.08.023.
40. Mishra M., Gupta K.K., Kumar S. 2015. Impact of the stem extract of Thevetia neriifolia on the feeding potential and histological architecture of the midgut epithelial tissue of early fourth instars of Helicoverpa armigera Hübner. International Journal of Insect Science 7: 53−60. DOI: 10.4137/IJIS.S29127.
41. Mojarab-Mahboubkar M., Sendi J.J., Aliakbar A. 2015. Effect of Artemisia annua L. essential oil on toxicity, enzyme activities, and energy reserves of cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Journal of Plant Protection Research 55 (4): 371−376. DOI: 10.1515/jppr-2015-0049.
42. Nath B.S. 2003. Shifts in glycogen metabolismin hemolymph and fat body of the silkworm, (Lepidoptera: Bombycidae) in response to organophosphorus insecticide toxicity. Pesticide Biochemistry and Physiology 74 (2): 73−84. DOI: 10.1016/S0048-3575(02)00152-9.
43. Pinto P.V.A., Kaplan A., Dreal P.A. 1969. Aldolase: I. Colorimetric determination. Clinical Chemistry 15 (5): 349–360. Available on: http://clinchem.aaccjnls.org/c.... [Accessed: February 23, 2018].
44. Qin W., Huang S., Li C., Chen S., Peng Z. 2010. Biological activity of the essential oil from the leaves of Piper sarmentosum Roxb. (Piperaceae) and its chemical constituents on Brontispa longissima (Gestro) (Coleoptera: Hispidae). Pesticide Biochemistry and Physiology 96 (3): 132−139. DOI: 10.1016/j.pestbp.2009.10.006.
45. Rauschenbach I.Y., Chentsova N.A., Gruntenko N.E., Karpova E.K., Alekseev A.A., Komarova T.N., Vasiliev V.G. 2007a. Dopamine and octopamine regulate 20-hydroxyecdysone level in vivo in Drosophila. Archives of Insect Biochemistry and Physiology 65 (2): 95–102. DOI:10.1002/arch.20183.
46. Rauschenbach I.Y., Bogomolova E.V., Gruntenko N.E., Adonyeva N.V. Chentsova N.A. 2007b. Effects of juvenile hormone and 20-hydroxyecdysone on alkaline phosphatase activity in Drosophila under normal and heat stress conditions. Journal of Insect Physiology 53 (6): 587–591. DOI: 10.1016/j.jinsphys.2007.02.011.
47. Riba M., Mart J., Sans A. 2003. Influence of azadirachtin on development and reproduction of Nezara viridula L. (Het., Pentatomidae). Journal of Applied Entomology 127 (1): 37−41. DOI: 10.1046/j.1439-0418.2003.00684.x.
48. Rohdendorf E.B., Sehnal F. 1972. The induction of ovarian dysfunctions in Thermobia domestica by the Cercropia juvenile hormones. Experientia 28 (9): 1099−110l. DOI: 10.1007/BF01918699.
49. Romanyk M., Cadahia Y.D. 2002. Plagas de insectos en las masas forestales. Ediciones Mundi-Prensa, Madrid, España, 338 pp.
50. SAS Institute. 1997. SAS/STAT user’s guide for personal computers. SAS Institute, Cary, NC.
51. Senthil-Nathan S., Chung P.G., Murugan K. 2004. Effect of botanical insecticides and bacterial toxins on the gut enzyme of the rice leaffolder Cnaphalocrocis medinalis. Phytoparasitica 32 (5): 433–443.
52. Senthil-Nathan S., Chung P.G., Murugan K. 2004. Effect of botanical insecticides and bacterial toxins on the gut enzyme of the rice leaf folder Cnaphalocrocis medinalis. Phytoparasitica 32: 433–443. DOI: 10.1007/BF02980437.
53. Senthil-Nathan S. 2006. Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaf folder Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae). Pesticide Biochemistry and Physiology 84 (2): 98–108. DOI: 10.1016/j.pestbp.2005.05.006.
54. Senthil-Nathan S., Choi M.Y., Paik C.H., Seo H.Y. 2007. Food consumption, utilization, and detoxification enzyme activity of the rice leaf folder larvae after treatment with Dysoxylum triterpenes. Pesticide Biochemistry and Physiology 88 (3): 260−267. DOI: 10.1016/j.pestbp.2006.12.004.
55. Shaalan E.A.S., Canyonb D., Younesc M.W.F., Abdel-Wahaba H., Mansoura A.H. 2005. A review of botanical phytochemicals with mosquitocidal potential. Environmental International 31 (8): 1149–1166. DOI: 10.1016/j.envint.2005.03.003.
56. Shekari M., Sendi J.J., Etebari K., Zibaee A., Shadparvar A. 2008. Effect of Arthemisia annua L. (Asteracea) on nutritional physiology and enzyme activities of elm leaf beetle, Xanthogaleruca luteola Mull. (Coleoptera: Chrysomellidae). Pesticide Biochemistry and Physiology 91 (1): 66–74. DOI: 10.1016/j.pestbp.2008.01.003.
57. Siegert K.J. 1987. Carbohydrate metabolism in Manduca sexta during late larval development. Journal Insect Physiology 33 (6): 421−427. DOI: 10.1016/0022-1910(87)90021-7.
58. Sujak P., Ziemnicki K., Ziemnicka J., Lipa J.J., Obuchowicz L. 1978. Acid and alkaline-phosphatase activity in fat-body and midgut of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), infected with nuclear polyhedrosis virus. Journal of Invertebrate Patholology 31 (1): 4–9. DOI: 10.1016/0022-2011(78)90101-5.
59. Sukhanova M.J., Grenback L.G., Gruntenko N.E., Khlebodarova T.M., Rauschenbach I.Y. 1996. Alkaline phosphatase in Drosophila under heat stress. Journal Insect Physiology 42 (2): 161–165. DOI: 10.1016/0022-1910(95)00070-4.
60. Timmins W.A., Reynolds S.E. 1992. Azadirachtin inhibits secretion of trypsin in midgut of Manduca sexta caterpillars: reduced growth due to impaired protein digestion. Entomologia Experimentalis et Applicata 63 (1): 47−54. DOI: 10.1111/j.1570-7458.1992.tb02418.x.
61. Tripathi A.K., Prajapati V., Khanuja S.P.S., Kumar S. 2001. Toxicity, feeding deterrence and effect of activity of 1,8-cineole from Artemisia annua on progeny production of Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Economic Entomology 94 (4): 979−983. DOI: 10.1603/0022-0493-94.4.979.
62. Valizadeh B., Sendi J.J., Zibaee A., Oftadeh M. 2013. Effect of Neem based insecticide Achook® on mortality, biological and biochemical parameters of elm leaf beetle Xanthogaleruca luteola (Col.: Chrysomelidae). Journal of Crop Protection 2 (3): 319–330.
63. Waldbauer G.P. 1968. The consumption and utilization of food by insects. Advances in Insect Physiology 5: 229–288. DOI: 10.1016/S0065-2806(08)60230-1.
64. Williams L.A.D. 1993. Adverse effects of extracts of Artocarpus altilis Park and Azadirachta indica (A. Juss) on the reproductive physiology of the adult female tick, Boophilus microplus (Canest.). Invertebrate Reproduction and Development 23 (2−3): 159−164: DOI: 10.1080/07924259.1993.9672307.
65. Wright T.R.F. 1987. Genetic of biogenic amines metabolism, sclerotisation and melanisation in Drosophila melanogaster. Advances in Genetics 24: 127–221. DOI: 10.1016/S0065-2660(08)60008-5.
66. Yazdani E., Sendi J.J., Hajizadeh J. 2014. Effect of Thymus vulgaris L. and Origanum vulgare L. essential oils on toxicity, food consumption, and biochemical properties of lesser mulberry pyralid Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Journal of Plant Protection Research 54 (1): 53−61. DOI: 10.2478/jppr-2014-0008.
67. Yazdani E., Sendi J.J., Aliakbar A., Senthil-Nathan S. 2013. Effect of Lavandula angustifolia essential oil against lesser mulberry pyralid Glyphodes pyloalis Walker (Lep.: Pyralidae) and identification of its major derivatives. Pesticide Biochemistry and Physiology 107 (2): 250−257. DOI: 10.1016/j.pestbp.2013.08.002.
eISSN:1899-007X
ISSN:1427-4345