ORIGINAL ARTICLE
Mechanically-injured wheat plants release greater amounts of the secondary metabolites linalool and linalool oxide
Dariusz Piesik 1, 2
,  
David K. Weaver 2, 3
,  
Gavin E. Peck 2
,  
 
 
More details
Hide details
1
University of Technology and Agriculture, Department of Applied Entomology Kordeckiego 20, 85-225 Bydgoszcz, Poland
2
Montana State University, Department of Entomology, Bozeman, MT 59717-3120, USA
3
Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, MT 59717-3120, USA
CORRESPONDING AUTHOR
Dariusz Piesik
University of Technology and Agriculture, Department of Applied Entomology Kordeckiego 20, 85-225 Bydgoszcz, Poland
 
Journal of Plant Protection Research 2006;46(1):29–39
KEYWORDS
TOPICS
ABSTRACT
Plants under attack of herbivores can emit increased amounts of volatile compounds from their leaves. Similarly, mechanically-injured plants can emit volatile chemicals that differ both quantitatively and qualitatively from undamaged plants. In this experiment, mechanical injury increased the release of the secondary metabolites linalool (3,7-dimethyl-1,6-octadien-3-ol) and linalool oxide (5-ethenyltetrahydro-2-furanmethanol) by wheat plants. The amounts released varied significantly with injury type and the period of time after injury. The time interval for the volatile collection within the photophase also influenced the amount collected for each day. The increased emission of these compounds, as a result of injury, may be explained as a defense mechanism against wounding. The role of these plant volatiles can be further investigated in the context of plant response to mechanical injury, within the broader context of all types of injury.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (32)
1.
Agrawal A.A., Tuzun S., Bent E. (eds.).1999. Induced Plant Defenses against Pathogens and Herbivores. APS Press, St Paul, Minnesota.
 
2.
Banchio E., Zygadlo J., Valladares G.R. 2005. Effects of mechanical wounding on essential oil composition and emission of volatiles from Minthostachys mollis. J. Chem. Ecol. 31: 719–727.
 
3.
Batten J.H., Stutte G.W., Wheeler R.M. 1995. Effect of crop development on biogenetic emissions from plant populations grown in closed plant growth chambers. Phytochemistry 39: 1351–1357.
 
4.
Buttery R.G., Xu Cheng-Ji, Ling L.C. 1985. Volatile components of wheat leaves (and stems): possible insect attractants. J. Agric. Food Chem. 33: 115–117.
 
5.
Cardoza Y.J., Albron H.T., Tumlinson J.H. 2002. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J. Chem. Ecol. 28: 161–174.
 
6.
Cardoza Y.J., Teal P.E.A., Tumlinson J.H. 2003. Effect of peanut plant fungal infection on oviposition preference by Spodoptera exigua and on host-searching behavior by Cotesia marginiventris. Environ. Entomol. 32: 970–976.
 
7.
Chamberlain K., Pickett J.A., Woodcock C.M. 2000. Plant signaling and induced defence in insect attack. Mol. Plant Pathol. 1: 67–72.
 
8.
De Moraes C.M., Lewis W.J., Paré P.W., Alborn H.T., Tumlinson J.H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393: 570–573.
 
9.
De Moraes C.M., Mescher M.C., Tumlinson J.H. 2001. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature 410: 577–580.
 
10.
Dicke M., Sabelis M.W. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38: 148–165.
 
11.
Engelberth J., Alborn H.T., Schmelz E.A., Tumlinson J.H. 2004. Airborne signals prime plants against insect herbivore attack. Plant Biol. 101: 1781–1785.
 
12.
Farag M.A., Paré P.W. 2002. C 6 – green leaf volatiles trigger local and systemic VOC emission in tomato. Phytochemistry 61: 545–554.
 
13.
Hamilton-Kemp T.R., Andersen R.A. 1984. Volatile compounds from Minthostachys mollis. J. Chem. Ecol. 31: 719–727.
 
14.
Hamilton-Kemp T.R., Andersen R.A. 1986. Volatiles from winter wheat: identification of additional compounds and effects of tissue source. Phytochemistry 25: 241–243.
 
15.
Hatanaka A. 1993. The biogeneration of green odour by green leaves. Phytochemistry 34: 1201–1281.
 
16.
Hoballah M.E., Turlings T.C.J. 2005. The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J. Chem. Ecol. 31: 2003–2018.
 
17.
Johansson C., Pettersson J., Niemeyer H.M. 1997. Interspecific recognition through odours by aphids ( Sternorrhyncha: Aphididaea ) feeding on wheat plants. Eur. J. Entomol. 94: 557–559.
 
18.
Karban R., Baldwin I.T. 1997. Induced Responses to Herbivory. Univ. Chicago Press, Chicago.
 
19.
Kessler A., Baldwin I.T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144.
 
20.
Koschier E.H., De Kogel W.J., Visser J.H. 2000. Assessing the attractiveness of volatile plant compounds to western flower thrips Frankliniella occidentalis . J. Chem. Ecol. 26: 2643–2655.
 
21.
Ninkovic V., Ahmed E., Glinwood R., Pettersson J. 2003. Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agr. Forest Entomol. 5: 27–33.
 
22.
Quiroz A., Niemeyer H.M. 1998. Olfactometer-assessed responses of aphid Rhopalosiphum padi to wheat and oat volatiles. J. Chem. Ecol. 24: 113–124.
 
23.
Quiroz A., Niemeyer H.M. 1998. Activity of enantiomers of sulcantol on apterae of Rhopalosiphum padi. J. Chem. Ecol. 24: 361–370.
 
24.
Rasmann S., Köllner T.G., Degenhardt J., Hiltpold I., Toepfer S., Kuhlmann U., Gershenzon J., Turlings T.C.J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434: 732–737.
 
25.
Reddy G.V.P., Guerrero A. 2004. Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci. 9: 253–261.
 
26.
Rodriguez-Saona C., Crafts-Brandner S.J., Paré P.W., Henneberry T.J. 2001. Exogenous methyl jasmonate induces volatile emission in cotton plants. J. Chem. Ecol. 27: 679–695.
 
27.
Rodriguez-Saona C., Crafts-Brandner S.J., Caňas L.A. 2003. Volatile emissions triggered by multiple herbivore damage: beet armyworm and whitefly feeding on cotton plants. J. Chem. Ecol. 29:2539–2550.
 
28.
Röse U.S.R., Manukian A., Heath R.R., Tumlinson J.H. 1996. Volatile semiochemicals released from undamaged cotton leaves: A systemic response of living plants to caterpillar damage. Plant Physiol. 111: 487–495.
 
29.
Thaler J.S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399: 686–688.
 
30.
Röse U.S.R., Lewis J.W., Tumlinson J.H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol. 24: 303–319.
 
31.
Turlings T.C.J., Tumlinson J.H., Lewis W.J. 1990. Exploitation of herbivore induced plant odors by host-seeking parasitic wasps. Science 250: 1251–1253.
 
32.
Wang Q.H., Dorn S. 2003. Selection on olfactory response to semiochemicals from a plant-host complex in a parasitic wasp. Heredity 91: 430–435.
 
eISSN:1899-007X
ISSN:1427-4345