ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Salinity stress tolerance in staple crops enhanced using native PGPRs
  • Comparative analysis in the development pattern of staple crops using native rhizobacteria and commercial biofertilizer
  • Effect of commercially available biofertilizer over the growth of experimental crops
KEYWORDS
TOPICS
ABSTRACT
Salinity is one of the most significant constraints to crop production in dry parts of the world. This research emphasizes the beneficial effects of plant growth-promoting rhizobacterial isolates (PGPR) on the physiological responses of maize and wheat in a saline (NaCl) environment. Soil samples for the study were collected from a maize field in Baddi, Himachal Pradesh, India. Isolated bacterial strains were screened for salt (NaCl) tolerance and plant growth-promoting characters (i.e., indole acetic acid (IAA) production, siderophore production, amino cyclopropane-1-carboxylic acid (ACC) deaminase activity, hydrogen cyanide (HCN) production, and mineral phosphate solubilization). Screened bacterial isolates were further tested in pot experiments to examine their effects on wheat and maize growth. The treatments included five levels of bacterial inoculation (P0: control, P1: ACC deaminase positive + siderophore producer + NaCl tolerant bacteria, P2: mineral phosphate solubilizer + HCN producer + NaCl tolerant bacteria, P3: IAA producer + ACC deaminase positive + NaCl tolerant bacteria, P4: bacterial consortium, P5: Phosphomax commercial biofertilizer) and salt stress at 6 dS/m. Research findings found that exposure to a bacterial consortium led to the highest growth parameter in maize, including shoot length, root length, shoot and root dry weight followed by P2, P3, and P5 treatments at 6 dS/m salinity levels. However, P2 showed the best results for wheat at the same salinity levels, followed by P3, P4 and P5 treatments. P1 treatment did not show a significant result compared to control at 6dS/m salt level for both crops. The maximum proline content in maize and wheat was observed in P4 (23.28 μmol · g−1) and P2 (15.52 μmol · g−1) treatments, respectively, followed by P5 with Phosphomax biofertilizer. Therefore, the study proposed the application of growth-promoting bacterial isolates as efficient biofertilizers in the Baddi region of Himachal Pradesh, India.
ACKNOWLEDGEMENTS
The authors wish to thank the Bhojia Institute of Life Sciences, Budh, Baddi, H.P., India, for technical support to complete this study.
RESPONSIBLE EDITOR
Huan Zhang
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (33)
1.
Abbas W., Ashraf M., Akram N.A. 2010. Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycine betaine and sugarbeet extracts. Scientia Horticulturae 125 (3): 188−195. DOI: https://doi.org/10.1016/j.scie....
 
2.
Agami R.A., Medani R.A., Abd El-Mola I.A., Taha R.S. 2016. Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L.) exposed to water stress. International Journal of Agriculture and Environmental Research 2 (5): 78.
 
3.
Akhtar M.S. 2019. Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. Vol. 2. Springer, UK. DOI: https://doi.org/10.1007/978-98....
 
4.
Akter M., Oue H. 2018. Effect of saline irrigation on accumulation of Na+, K+, Ca2+, and Mg2+ ions in rice plants. Agriculture 8 (10): 164. DOI: https://doi.org/10.3390/agricu....
 
5.
Almaghrabi O.A., Massoud S.I., Abdelmoneim T.S. 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences 20 (1): 57−61. DOI: https://doi.org/10.1016/j.sjbs....
 
6.
Ansary M.H., Rahmani H.A., Ardakani M.R., Paknejad F., Habibi D., Mafakheri S. 2012. Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annals of Biological Research 3 (2): 1054−1062.
 
7.
Arora N.K., Verma M. 2017. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 7 (6): 381. DOI: https://doi.org/10.1007/s13205....
 
8.
Bharti N., Barnawal D. 2019. Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. p. 85−106. In: “PGPR Amelioration in Sustainable Agriculture” (A.K. Singh, A. Kummar, P.K. Singh, eds). Woodhead Publishing, UK.
 
9.
Bhatt K., Maheshwari D.K. 2020. Zinc solubilizing bacteria (Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech 10 (2): 36. DOI: https://doi.org/10.1007/s13205....
 
10.
Chen F., Li X., Zhu Q., Ma J., Hou H., Zhang S. 2019. Bioremediation of petroleum-contaminated soil enhanced by aged refuse. Chemosphere 222: 98−105. DOI: https://doi.org/10.1016/j.chem....
 
11.
Dixit R., Agrawal L., Singh S.P., Singh P.C., Prasad V., Chauhan B.S. 2018. Paenibacillus lentimorbus induces autophagy for protecting tomato from Sclerotium rolfsii infection. Microbiological Research 215: 164−174. DOI: https://doi.org/10.1016/j.micr....
 
12.
dos Reis A.R., de Queiroz Barcelos J.P., de Souza Osório C.R., Santos E.F., Lisboa L.A., Santini J.M., dos Santos M.J., Junior E.F., Campos M., de Figueiredo P.A., Lavres J. 2017. A glimpse into the physiological, biochemical and nutritional status of soybean plants under Ni-stress conditions. Environmental and Experimental Botany 144: 76−87. DOI: https://doi.org/10.1016/j.enve....
 
13.
Dworkin M., Foster J.W. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology 75 (5): 592. DOI: https://doi.org/10.1128/jb.75.....
 
14.
Egamberdieva D., Kucharova Z. 2009. Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils 45 (6): 563−571. DOI: https://doi.org/10.1007/s00374....
 
15.
Egamberdieva D., Shrivastava S., Varma A. 2015. Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Springer International Publishing, UK. DOI 10.1007/978-3-319-13401-7.
 
16.
Emami T., Mirzaeiheydari M., Maleki A., Bazgir M. 2019. Effect of native growth promoting bacteria and commercial biofertilizers on growth and yield of wheat (Triticum aestivum) and barley (Hordeum vulgare) under salinity stress conditions. Cellular and Molecular Biology 65 (6): 22−27. DOI: https://doi.org/10.14715/cmb/2....
 
17.
Goswami D., Thakker J.N., Dhandhukia P.C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture 2 (1): 1127500. DOI: https://doi.org/10.1080/233119....
 
18.
Gottel N.R., Castro H.F., Kerley M., Yang Z., Pelletier D.A., Podar M., Karpinets T., Uberbacher E.D., Tuskan G.A., Vilgalys R., Doktycz M.J. 2011. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Applied and Environmental Microbiology 77 (17): 5934−5944. DOI: https://doi.org/10.1128/AEM.05....
 
19.
Johnston-Monje D., Lundberg D.S., Lazarovits G., Reis V.M., Raizada M.N. 2016. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant and Soil 405 (1−2): 337−355. DOI: https://doi.org/10.1007/s11104....
 
20.
Kalam S., Das S.N., Basu A., Podile A.R. 2017. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. Journal of Basic Microbiology 57 (5): 376−385. DOI: https://doi.org/10.1002/jobm.2....
 
21.
Karnwal A. 2009. Production of indole acetic acid by fluorescent Pseudomonas in the presence of L-tryptophan and rice root exudates. Journal of Plant Pathology 1: 61−63. DOI: http://dx.doi.org/10.4454/jpp.....
 
22.
Karnwal A. 2017. Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L.) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.). Journal of Plant Protection Research 57 (2): 144−151. DOI: https://doi.org/10.1515/jppr-2....
 
23.
Karnwal A. 2019. Screening, isolation and characterization of culturable stress-tolerant bacterial endophytes associated with Salicornia brachiata and their effect on wheat (Triticum aestivum L.) and maize (Zea mays) growth. Journal of Plant Protection Research 59 (3): 293−303. DOI: https://doi.org/10.24425/jppr.....
 
24.
Karnwal A. 2020. Assessment of plant growth-promoting stresstolerant endophytes screened from Bougainvillea glabra for the growth of Triticum aestivum L. and Zea mays. Bio-Technologia 101 (1): 63−73. DOI: https://doi.org/10.5114/bta.20....
 
25.
Karnwal A., Mannan M. 2018. Application of Zea mays L. rhizospheric bacteria as promising biocontrol solution for rice sheath blight. Pertanika Journal of Tropical Agricultural Science 41 (4): 1613−1625.
 
26.
Numan M., Bashir S., Khan Y., Mumtaz R., Shinwari Z.K., Khan A.L., Khan A., Ahmed A.H. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiology Research 209: 21−32. DOI: https://doi.org/10.1016/j.micr....
 
27.
Orhan F. 2016. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Brazilian Journal of Microbiology 47 (3): 621−627. DOI: https://doi.org/10.1016/j.bjm.....
 
28.
Pikovskaya R.I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362−370.
 
29.
Schwyn B., Neilands J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160 (1): 47−56. DOI: https://doi.org/10.1016/0003-2....
 
30.
Sharifi P. 2017. The effect of plant growth promoting rhizobacteria (PGPR), salicylic acid and drought stress on growth indices, the chlorophyll and essential oil of Hyssop (Hyssopus officinalis). Biosciences, Biotechnology Research Asia 14 (3): 1033−1042. DOI: https://doi.org/10.13005/bbra/....
 
31.
Shruti K., Karnwal A., Yuvneet R. 2013. Potential plant growth-promoting activity of rhizobacteria Pseudomonas sp. in Oryza sativa. Journal of Natural Product and Plant Resources 3 (4): 38−50.
 
32.
Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability − a review. Molecules 21 (5): 573. DOI: https://doi.org/10.3390/molecu....
 
33.
Zheng W., Zeng S., Bais H., LaManna J.M., Hussey D.S., Jacobson D.L., Jin Y. 2018. Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Water Resources Research 54 (5): 3673−3687. DOI: https://doi.org/10.1029/2018WR....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top