• The effect of Streptomyces strains and their metabolites against Pyrenophora tritici-repentis were evaluated.
  • Hyphae of Pyrenophora tritici-repentis were altered by Streptomyces cell-free culture in several concentrations.
  • Seedlings of wheat treated with antagonists and their metabolites had biomass gain and lesser tan spot symptoms than untreated plants.
Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is a worrisome destructive foliar disease of wheat-growing areas around the world. Streptomyces spp. have been investigated as biocontrol agents because they beneficially interact with host plants and produce important bioactive substances that can act in the suppression of diseases in plants. In the present study, antifungal activity and plant growth-promoting of Streptomyces spp. strains 6(4), R18(6), and their consortium, were evaluated through in vitro and greenhouse assays. The Ultra High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-QTOF MS) technique was used to analyze the crude extract of each strain. The results of the in vitro tests showed that the 6(4) metabolites caused several abnormalities in the conidial germination of Ptr. This strain also produced indole acetic acid (IAA) and siderophores. Strain R18(6) did not alter conidial germination of Ptr, and produced IAA and phosphate solubilizers. In the greenhouse, the treatment ‘seed inoculation plus foliar spray’ with streptomycetes propagules and metabolites contributed to biomass gain, with no statistical difference between the strains (p < 0.05). Treatments with 6(4) ‘seed inoculation’, ‘seed inoculation plus foliar spray’, and consortium ‘seed inoculation’ showed the lowest percentage of injured area compared to other treatments (p < 0.05). UHPLC-QTOF MS data showed that erucamide is present in the culture of 6(4), but not in the culture of R18(6). Therefore, this substance is one of those involved in Ptr hyphal abnormalities, and R18(6) use indirect mechanisms of action to control Ptr. We concluded that these Streptomyces spp. and their metabolites have a promising potential for biological control of Ptr to protect wheat plants from tan spot damage.
We want to thank Professor Marcelo Gravina de Moraes for support in the greenhouse experiments.
This research was funded by the Brazilian Federal Government Agency Coordenação de Aperfeiçoamente de Pessoal de Nível Superior (CAPES).
Joanna Pulawska
The authors have declared that no conflict of interests exist.
Acevedo M., Zurn J.D., Molero G., Singh P., He X., Aoun M., Juliana P., Bockleman H., Bonman M., El-Sohl M., Amri A., Coffman R., McCandless L. 2018. The role of wheat in global food security. p. 81–110. In: “Agricultural Development and Sustainable Intensification: Technology and Policy Challenges in the Face of Climate Change” (N. S. Udaya, ed.). 1st ed. Routledge, New York, NY, USA. DOI: 10.4324/9780203733301-4.
Asaturova A., Zhevnova N., Tomashevich N., Pavlova M., Kremneva O., Volkova G., Sidorov N. 2022. Efficacy of new local bacterial agents against Pyrenophora tritici-repentis in Kuban Region, Russia. Agronomy 12 (2): 373. DOI: https://doi.org/10.3390/agrono....
Borba M.P., Witusk J.P., Cunha D.M., Lima-Morales D., Martins A.F., Van Der Sand S. 2022. Whole genome sequencing based characterization of Streptomyces sp. 6(4): focus on natural products. Access Microbiology 5 (3): 1–12. DOI: https://doi.org/10.1099/acmi.0....
Canteri M.G., Althaus R.A., Virgens Filho J.S. das, Giglioti E.A., Godoy C.V. 2001. SASM-Agri - Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scott - Knott, Tukey e Duncan.
Chen Y., Zhou D., Qi D., Gao Z., Xie J., Luo Y. 2018. Growth promotion and disease suppress ability of a Streptomyces sp. CB-75 from banana rhizosphere soil. Frontiers in Microbiology 8: 2704. DOI: https://doi.org/10.3389/fmicb.....
Ciuffetti L.M., Manning V.A., Pandelova I., Faris J.D., Friesen T.L., Strelkov S.E., Weber G.L., Goodwin S.B., Wolpert T.J., Figueroa M. 2014. Pyrenophora tritici-repentis: A plant pathogenic fungus with global impact. p. 1–39. In: “Genomics of Plant-Associated Fungi: Monocot Pathogens” (R. A. Dean, A. Lichens-Park, C. Kole, eds.) Springer-Verlag, Berlin, Heidelberg. DOI: 10.1007/978-3-662-44053-7_1.
CLSI. 2002. Método de Referência para Testes de Diluição em Caldo para Determinação da Sensibilidade a Terapia Antifúngica dos Fungos Filamentosos: Norma Aprovada. Available on: https://www7.anvisa.gov.br/ser.... [Accessed: September 2022].
Donald L., Pipite A., Subramani R., Owen J., Keyzers R.A., Taufa T. 2022. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective. Microbiology Research 13 (3): 418-465. DOI: https://doi.org/10.3390/microb....
El-Shatoury A.S., Ameen F., Moussa H., Wahid A.O., Dewedar A., AlNadhari S. 2020. Biocontrol of chocolate spot disease (Botrytis cinerea) in faba bean using endophytic actinomycete Streptomyces: a field study to compare application techniques. PeerJ. 8: e8582. DOI: 10.7717/peerj.8582.
Glickmann E., Dessaux Y. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied Environmental and Microbiology 61 (2): 793–796. DOI: 10.1128/aem.61.2.793-796.1995.
Gordon S.A, Weber R.P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiology 26 (1): 192–195. DOI: https://doi.org/10.1104/pp.26.....
Jamison M.T., Wang X., Cheng T., Molinski T.F. 2019. Synergistic anti-Candida activity of bengazole A in the presence of bengamide A. Marine Drugs 17: 102. DOI: 10.3390/md17020102.
Köhl J., Kolnaar R., Ravensberg W.J. 2019 Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science: 845. DOI: https://doi.org/10.3389/fpls.2....
Larran S., Simón M.R., Moreno M.V., Santamarina Siurana M.P., Perelló A. 2016. Endophytes from wheat as biocontrol agents against tan spot disease. Biological Control 92:17–23. DOI: https://doi.org/10.1016/j.bioc....
LeBlanc N. 2022 Bacteria in the genus Streptomyces are effective biological control agents for management of fungal plant pathogens: a meta-analysis. BioControl 67 (1): 111–121. DOI: https://doi.org/10.1007/s10526....
Nautiyal C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170 (1): 265–270. DOI: 10.1111/j.1574-6968.1999.tb13383.x.
Olanrewaju O.S., Babalola O.O. 2019. Streptomyces: implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology 103 (3): 1179–1188. DOI: 10.1007/s00253-018-09577-y.
Oliveira M.F., da Silva G.M., Van Der Sand S.T. 2010. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Research in Microbiology 161 (7): 565–572. DOI: https://doi.org/10.1016/j.resm....
Pereira P.M., Santana F.M., Van Der Sand S. 2022. Evaluation of Streptomyces spp. strains as potential biocontrol agents for Pyrenophora tritici-repentis. Biocontrol Science and Technology 32 (9): 1–12. DOI: https://doi.org/10.1080/095831....
Qi D., Zou L., Zhou D., Zahang M., Wei Y., Li K., Zhao Y., Zhang Lu., Xie J. 2022. Biocontrol potential and antifungal mechanism of a novel Streptomyces sichuanensis against Fusarium oxysporum f. sp. cubense tropical race 4 in vitro and in vivo. Applied Microbiology and Biotechnology 106: 1633–1649. DOI: 10.1007/s00253-022-11788-3.
Rakshit A., Meena V.S., Abhilash P.C., Sarma B.K., Singh H.B., Fraceto L., Parihar M., Kumar A. 2021. Biopesticides. 2th ed. Advances in Bio-inoculants. Woodhead Publishing, Sawston, UK, 446 pp.
Savary S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. 2019. The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution 3 (3): 430–439. DOI: https://doi.org/10.1038/s41559....
Shao D., Smith D.L., Kabbage M., Roth M.G. 2021. Effectors of plant necrotrophic fungi. Frontiers in Plant Science 12: 687713. DOI: https://doi.org/10.3389/fpls.2....
Sharma M., Manhas R.K. 2022. Biocontrol potential of Streptomyces sp. M4 and salvianolic acid B produced by it against Alternaria black leaf spot. Microbial Pathogenesis 173: 105869. DOI: https://doi.org/10.1016/j.micp....
Shrivastava P., Kumar R. 2018. Actinobacteria: eco-friendly candidates for control of plant diseases in a sustainable manner. p. 79–91. In: “New and Future Developments in Microbial Biotechnology and Bioengineering” (B.P Singh, V.K. Gupta, A.K. Passari, eds.). Elsevier Science, USA. DOI: https://doi.org/10.1016/B978-0....
Som N.F., Heine D., Holmes N., Knowles F., Chandra G., Seipke R.F. 2017. The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3 (2). Microbiology 163: 1415–1419. DOI: 10.1099/mic.0.000524.
Suryanarayanan T.S.B., Vidal S. 2018. Biological control through fungal endophytes: gaps in knowledge hindering success. Current Biotechnology 7 (3): 185–198. DOI: https://doi.org/10.2174/221155....
Vurukonda S.S.K.P., Giovanardi D., Stefani E. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Science 19 (4): 952. DOI: https://doi.org/10.3390/ijms19....
White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal DNA for phylogenetics. p. 315–322. In: “PCR Protocols: A Guide to the Methods and Applications” (M. A. Innis, D.H. Gelfand, J J. Sninsky, T.J. White, eds.). Academic Press, San Diego, CA.
Zeyad M.T., Tiwari P., Ansari W.A., Kumar S.C., Kumar M., Chakdar H., Srivastava A.K., Singh U.B., Saxena A.K. 2022. Bio-priming with a consortium of Streptomyces araujoniae strains modulates defense response in chickpea against Fusarium wilt. Frontier in Microbiology 13: 998546. DOI: 10.3389/fmicb.2022.998546.
Journals System - logo
Scroll to top