ORIGINAL ARTICLE
Patterns in the horizontal structure of litter invertebrate communities in windbreak plantations in the steppe zone of the Ukraine
 
More details
Hide details
1
Department of Zoology and Ecology, Oles Honchar Dnipropetrovsk National University, Gagarina 72, 49010 Dnipropetrovsk, Ukraine
CORRESPONDING AUTHOR
Viktor Brygadyrenko
Department of Zoology and Ecology, Oles Honchar Dnipropetrovsk National University, Gagarina 72, 49010 Dnipropetrovsk, Ukraine
Submission date: 2014-05-29
Acceptance date: 2014-11-14
 
Journal of Plant Protection Research 2014;54(4):414–420
KEYWORDS
TOPICS
ABSTRACT
The article analyses the patterns in the horizontal structure of litter invertebrate communities in windbreak plantations in the Steppe zone of the Ukraine. The number of invertebrate species shows statistically insignificant changes depending on the extent of the litter horizon development. With an increase in litter mass from 300 to 900 g/m 2 the number of invertebrate species increases. An increase in the total number of macrofauna is observed in areas having a minimum and maximum thickness of the litter layer. Maximum values in the Shannon diversity index were observed in areas with sparse litter (50–150 g/m2). An observed increase in the variety of macrofauna species were seen where there was sparse grass cover in windbreak planted areas. The total number of litter invertebrate individuals related to the percentage of projective cover of herbaceous plants shows a significant increase in plots with 20–28% cover, though this factor does not affect the number of Aranei, Carabidae, and Staphylinidae. There is a decrease in the number of litter invertebrate species in areas with higher numbers of Lasius platythorax Seifert, 1991, while there is an insignificant change in the overall numbers of macrofauna. The abundance of Myrmica scabrinodis Nylander, 1846 does not show a significant influence on the number of litter macrofauna species. The minimum values of the Shannon biodiversity index for macrofauna were registered in plots with maximum numbers of M. scabrinodis. With an increase in the abundance of ants, the abundance of litter saprophages and phytophages decreases. There are also significant changes in the dominance structure of other taxonomic groups. Biotic factors have greater significance for the horizontal structure of litter macrofauna of steppe plantations than abiotic factors.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (36)
1.
Barsoum N., Fuller L., Ashwood F., Reed K., Bonnet-Lebrun A.-S., Leung F. 2013. Ground-dwelling spider (Araneae) and carabid beetle (Coleoptera: Carabidae) community assemblages in mixed and monoculture stands of oak (Quercus robur L./Quercus petraea (Matt.) Liebl.) and Scots pine (Pinus sylvestris L.). Forest Ecol. Manag. 321 (1): 29–41.
 
2.
Bird S., Coulson R.N., Crossley D.A. 2000. Impacts of silvicultural practices on soil and litter arthropod diversity in a Texas pine plantation. Forest Ecol. Manag. 131 (1–3): 65–80.
 
3.
Bonham K.J., Mesibov R., Bashford R. 2002. Diversity and abundance of some ground-dwelling invertebrates in plantation vs. native forests in Tasmania, Australia. Forest Ecol. Manag. 158 (1–3): 237–247.
 
4.
Brockerhoff E.G., Jactel H., Parrotta J.A., Quine C.P., Sayer J. 2008. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 17 (5): 925–951.
 
5.
Brygadyrenko V.V., Faly L.I., Yakimets’ K.G. 2012. Diversity of litter invertebrate communities from the Tunel’na Gully in Dnipropetrovsk city. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 20 (1): 3–12.
 
6.
Brygadyrenko V.V., Komarov O.S. 2008. Trophic structure of litter mesofauna: Biomass differentiation between trophic levels. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 16 (2): 12–23.
 
7.
Cameron K.H., Leather S.R. 2012. How good are carabid beetles (Coleoptera, Carabidae) as indicators of invertebrate abundance and order richness? Biodivers. Conserv. 21 (3): 763–779.
 
8.
Dlussky G.M. 2001. Structure of ant community (Hymenoptera, Formicidae) from an oligotrophic peat bog. Zoologicheskii Zhurnal 80 (8): 984–985.
 
9.
Ferguson S.H., Berube D.K.A. 2004. Invertebrate diversity under artificial cover in relation to boreal forest habitat characteristics. Can. Field-Nat. 118 (3): 386–394.
 
10.
Fuller R.J., Oliver T.H., Leather S.R. 2008. Forest management effects on carabid beetle communities in coniferous and broadleaved forests: Implications for conservation. Insect Conserv. Divers. 1 (4): 242–252.
 
11.
Halaj J., Halpern C.B., Yi H. 2008. Responses of litter-dwelling spiders and carabid beetles to varying levels and patterns of green-tree retention. Forest Ecol. Manag. 255 (3–4): 887–900.
 
12.
Hawes C., Evans H.F., Stewart A.J.A. 2013. Interference competition, not predation, explains the negative association between wood ants (Formica rufa) and abundance of ground beetles (Coleoptera: Carabidae). Ecol. Entomol. 38 (4): 315–322.
 
13.
Jukes M.R., Peace A.J., Ferris R. 2001. Carabid beetle communities associated with coniferous plantations in Britain: The influence of site, ground vegetation and stand structure. Forest Ecol. Manag. 148 (1–3): 271–286.
 
14.
Komarov O.S., Brygadyrenko V.V. 2011. Trophic preferences of Pterostichus oblongopunctatus (Coleoptera, Carabidae) in conditions of south forest-steppe. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 19 (1): 41–50.
 
15.
Korolev O.V., Brygadyrenko V.V. 2012. Trophic connections of Pterostichus melanarius (Coleoptera, Carabidae) with dominant species of invertebrates in forest ecosystems of the Steppe Dnieper basin. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 20 (1): 48–54.
 
16.
Kozłowski J., Kozłowska M. 2008. Differences in acceptability of herb plants and oilseed rape for slugs (A. lusitanicus, A. rufus and D. reticulatum) in food choice tests. J. Plant Prot. Res. 48 (4): 461–474.
 
17.
Meena N.K., Pal R., Pant R.P., Medhi R.P. 2013. Seasonal incidence of mite and influence of pesticidal application on orchid flower production. J. Plant Prot. Res. 53 (2): 124–127.
 
18.
Malaque M.A., Maeto K., Ishii H.T. 2008. Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. Appl. Entomol. Zool. 44 (1): 1–11.
 
19.
Marko B., Kiss K., Galle L. 2004. Mosaic structure of ant communities (Hymenoptera: Formicidae) in Eastern Carpathian marshes: Regional versus local scales. Acta Zool. Acad. Sci. Hung. 50 (2): 77–95.
 
20.
Moron D., Witek M., Woyciechowski М. 2008. Division of labour among workers with different life expectancy in theant Myrmica scabrinodis. Anim. Behav. 75 (2): 345–350.
 
21.
O’Grady A., Breen J., Harrington T.J., Courtney R. 2013. The seed bank in soil from the nests of grassland ants in a unique limestone grassland community in Ireland. Ecol. Eng. 61: 58–64.
 
22.
Oxbrough A., Gittings T., O’Halloran J., Giller P.S., Smith G.F. 2005. Structural indicators of spider communities across the forest plantation cycle. Forest Ecol. Manag. 212 (1–3): 171–183.
 
23.
Oxbrough A., Irwin S., Kelly T.C., O’Halloran J. 2010. Ground-dwelling invertebrates in reforested conifer plantations. Forest Ecol. Manag. 259 (10): 2111–2121.
 
24.
Oxbrough A., French V., Irwin S., Kelly T.C., Smiddy P., O’Halloran J. 2012. Can mixed species stands enhance arthropod diversity in plantation forests? Forest Ecol. Manag. 270: 11–18.
 
25.
Pearce J.L., Venier L.A. 2006. The use of beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: A review. Ecol. Indic. 6 (4): 780–793.
 
26.
Pielou E. 1977. Mathematical Ecology. John Wiley & Sons, New York, USA, 385 pp.
 
27.
Reynolds B.C., Crossley Jr. D.A., Hunter M.D. 2003. Response of soil invertebrates to forest canopy inputs along a productivity gradient. Pedobiologia 47 (2): 127–139.
 
28.
Schuldt A., Fahrenholz N., Brauns M., Migge-Kleian S., Platner C., Schaefer M. 2008. Communities of ground-living spiders in deciduous: Does tree species diversity matter? Biodivers. Conserv. 17 (5): 1267–1284.
 
29.
Shannon C., Weaver W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA, 125 pp.
 
30.
Slipinski P., Zmihorski M., Czechowski W. 2012. Species diversity and nestedness of ant assemblages in an urban environment. Eur. J. Entomol. 109 (2): 197–206.
 
31.
Sobek S., Steffan-Dewenter I., Scherber C., Tscharntke T. 2009. Spatiotemporal changes of beetle communities across a tree diversity gradient. Divers. Distrib. 15 (4): 660–670.
 
32.
Spitzer L., Konvicka M., Benes J., Tropek R., Tuf I.H., Tufova J. 2008. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Conserv. 141 (3): 827–837.
 
33.
Taboada A., Tárrega R., Calvo L., Marcos E., Marcos J.A., Salgado J.M. 2010. Plant and carabid beetle species diversity in relation to forest type and structural heterogeneity. Eur. J. Forest Res. 129: 31–45.
 
34.
Trzciński P., Piekarska-Boniecka H. 2013. Dynamics of predatory Syrphidae in the apple orchard and neighbouring shrubberies. J. Plant Prot. Res. 53 (2): 119–123.
 
35.
Winter S., Möller G.C. 2008. Microhabitats in lowland beech forests as monitoring tool for nature conservation. Forest Ecol. Manag. 255 (3–4): 1251–1261.
 
36.
Włodarczyk T., Zmihorski M., Olczyk A. 2009. Ants inhabiting stumps on clearcuts in managed forest in western Poland. Entomol. Fennica 20 (2): 121–128.
 
eISSN:1899-007X
ISSN:1427-4345