Semiochemicals for controlling insect pests
Nesreen M. Abd El-Ghany 1, A-B,D-F  
More details
Hide details
Department of Pests and Plant Protection, Agricultural and Biological Division, National Research Centre, Egypt
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Nesreen M. Abd El-Ghany   

Department of Pests and Plant Protection, Agricultural and Biological Division, National Research Centre, Dokki, Giza, Egypt
Online publish date: 2019-03-07
Submission date: 2018-10-03
Acceptance date: 2019-02-04
Journal of Plant Protection Research 2019;59(1):1–11
Semiochemicals are defined as informative molecules mainly used in plant-insect or insectinsect interactions as alternative or complementary components to insecticide approaches in different integrated pest management strategies. They are used to manipulate insect behaviour by affecting the survival and/or reproduction of insect pests for controlling their infestations on crops. The present review provides a basic summary of the utilization of semiochemicals for controlling insect pests. Two main topics were explored in this study. The first topic focuses on a description of semiochemicals and their types (pheromones and allelochemicals). Pheromones represent an intraspecific communication amidst members of the same species. Allelochemicals, produced by individuals of one species, modify the behavior of individuals of a different species (i.e. an interspecific effect). Allelochemicals include different informative molecules such as: allomones, kairomones, synomones, antimones and apneumones. The second topic focuses on the application of semiochemicals in IPM programs. Different semiochemicals are included in integrated pest management programs in various ways such as monitoring, mass trapping, attract-and-kill, push-pull, and disruption strategies. Pheromones are promising and can be used singly or in integration with other control strategies for monitoring and controlling insect pests in agricultural systems. For example, sex pheromones have been applied in mass trapping, disruption and attract-and-kill tactics in IPM programs.
The authors have declared that no conflict of interests exist.
Abd El-Ghany N.M., Abdel-Wahab E.S., Ibrahim S.S. 2016. Population fluctuation and evaluation the efficacy of pheromone-based traps with different color on tomato leafminer. moth, Tuta absoluta (Lepidoptera: Gelechiidae) in Egypt. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7 (4): 1533−1539.
Abd El-Ghany N.M., Abdel-Razek A.S., Djelouah K., Moussa A. 2018. Efficacy of some eco-friendly biopesticides against Tuta absoluta (Meyrick). Bioscience Research 15 (1): 28−40.
Abdel-Razek A.S., Abd El-Ghany N.M., Djelouah K., Moussa A. 2017. An evaluation of some eco-friendly biopesticides against Bemisia tabaci on two greenhouse tomato varieties in Egypt. Journal of Plant Protection Research 57 (1): 9–17. DOI:
Ahmed A.A.I., Hashem M.Y., Adel M.M., Mohamed S.M., Khalil S.H. 2013. Impact of Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) larval frass on oviposition of conspecific insects. Archive Phytopathology and Plant Protection 46 (5): 575–592. DOI:
Atterholt C.A., Delwiche M.J., Rice R.E., Krochta J.M. 1999. Controlled release of insect sex pheromones from paraffin wax and emulsions. Journal of Controlled Release 57: 233–247. DOI:
Barclay H.J., Judd G.J.R. 1995. Models for Mating Disruption by Means of Pheromone for Insect Pest Control. Researches on Population Ecology 37 (2): 239–247. DOI:
Barrett B. 1995. Effect of synthetic pheromone permeation on captures of male codling moth (Lepidoptera: Tortricidae) in pheromone and virgin female moth-baited traps at different tree heights in small orchard blocks. Environmental Entomology 24 (5): 1201–1206. DOI:
Beth A. 1932. Neglected Hormone. Natural Science 20: 177–183. Borden J.H. 1997. Disruption of semiochemical mediated aggregation in bark beetles (Coleoptera: Scolytidae). p. 421–438. In: “Insect Pheromone Research: New Directions” (R.T. Cardé, A.K. Minks, eds.). Springer, Boston, MA. DOI:
Borden J.H., Lafontaine J.P., Pureswaran D.S. 2008. Synergistic blends of monoterpenes for aggregation pheromones of the mountain pine beetle (Coleoptera: Curculionidae). Journal of Economic Entomology 101 (4): 1266–1275. DOI:
Bowers W.W., Gries G., Borden J.H., Pierce H.D.Jr. 1991. 3-Methyl-3-buten-1-ol: An aggregation pheromone of the foureyed spruce bark beetle, Polygraphus rufipennis (Kirby) (Coleoptera: Scolytidae). Journal of Chemical Ecology 17 (10): 1989–2002. DOI:
Brossut R. 1997. Phéromones: la communication chimique chez les animaux. [Pheromones: Chemical Communication in Animals]. Crusader Science, Paris, Berlin, CNRS editions, 133 pp.
Brower J.H., Smith L., Vail P.V., Flinn P.W. 1995. Biological control. p. 223–286. In: “Integrated Management of Insects in Stored Products” (B. Subramanyam, D.W. Hagstrum, eds.). Marcel Dekker, Inc. New York, 432 pp.
Burkholder W.E. 1990. Practical use of pheromones and other attractants for stored-product insects. p. 497–516. In: “Behavior-modifying Chemicals for Insect Management, Applications of Pheromones and Other Attractants” (R.L. Ridgeway, R.M. Silverstein, M.N. Inscoe, eds.). Marcel Dekker Inc., New York, 761 pp.
Butenandt A., Beckmann R., Stamm D., Hecker E. 1959. Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. [About the sexual attractant of the silk moth Bombyx mori – clean presentation and constitution]. Zeitschrift fur Naturforschung 14b: 283−284.
Carter M.E., Smith M.T., Turgeon J.J., Harrison R.G. 2009. Analysis of genetic diversity in an invasive population of Asian long-horned beetles in Ontario, Canada. The Canadian Entomologist 141 (6): 582–594. DOI:
Cook S.M., Khan Z.R., Pickett J.A. 2007. The use of push-pull strategies in integrated pest management. Annual Review of Entomology 52: 375–400. DOI:
Cork A. 2004. Pheromone manual. Natural Resources Institute. Chatham Maritime, ME4 4TB, UK, Chapter 4: 13−17.
Dougherty M.J., Guerin P., Ward R.D. 1995. Identification of oviposition attractants for the sandfly Lutzomyia longipalpis (Diptera: Psychodidae) present in volatiles of faeces from vertebrates. Physiological Entomology 20 (1): 23–32. DOI:
Dressler R.L. 1982. Biology of the orchid bees (Euglossini). Annual Review of Ecology and Systematics 13: 373–394. DOI:
EFSA (European Commission Food Safety Agency). 2016. A new Guidance Document on “Semiochemical active substances and plant protection products”, 37 pp. Available on: files/plant/docs/pesticides_ppp_app-proc_guide_doss_semiochemical.201605.pdf [Accessed: May 19, 2016].
El-Sayed A.M., Suckling D.M., Wearing C.H. 2006. Potential of mass trapping for long term pest management and eradication of invasive species. Journal of Economic Entomology 99 (5): 1550–1564. DOI:
El-Sayed A.M., Suckling D.M., Byers J.A., Jang E.B., Wearing C.H. 2009. Potential of “Lure and Kill” in long-term pest management and eradication of invasive species. Journal of Economic Entomology 102 (3): 815–835. DOI:
Evenden M.L., Judd G.J.R., Borden J.H. 1999. A synomone imparting distinct sex pheromone communication channels for Choristoneura rosaceana (Harris) and Pandemis limitata (Robinson) (Lepidoptera: Tortricidae). Chemoecology 9 (2): 73–80. DOI: 10.1007/ s000490050036.
Faleiro J.R. 2006. A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. International Journal of Tropical Insect Science 26: 135–150. DOI:
França de S.M., Mariana O.P., Cesar A.B., José V.O. 2013. The use of behavioral manipulation techniques on synthetic insecticides optimization. p. 177–196. In: “Insecticides – Development of Safer and More Effective Technologies” (S. Trdan, ed.). InTech Design team, Croatia, 548 pp. DOI:
Funaro C.F., Böröczky K., Vargo E.L., Schal C. 2018. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proceedings of the National Academy of Sciences of the United States of America 115 (15): 3888–3893. DOI:
Hallett R., Oehlschlager A., Borden J. 1999. Pheromone trapping protocols for the Asian palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). International Journal of Pest Management 45: 231–237. DOI:
Hassan E.M., Shahat A.A., Ibrahim N.A., Vlietinck A.J., Apers S., Pieters L. 2008. A new monoterpene alkaloid and other constituents of Plumeria acutifolia. Planta Medica 74 (14): 1749–1750. DOI:
Hassan E.M., Matloub A.A., Aboutabl M.E., Ibrahim N.A., Mohamed S.M. 2016. Assessment of anti-inflammatory, antinociceptive, immunomodulatory, and antioxidant activities of Cajanus cajan L. seeds cultivated in Egypt and its phytochemical composition. Pharmaceutical Biology 54 (8): 1380–1391. DOI:
Hassan R.A., Hassan E.M., Ibrahim N.A., Nazif N.M. 2015. Triterpenes and cytotoxic activity of Acokanthera oblongifolia Hochst. growing in Egypt. Research Journal of Pharmaceutical, Biological and Chemical Sciences 6 (1): 1677–1686.
Heuskin S., Godin B., Leroy P., Capella Q., Wathelet J.P., Verheggen F., Haubruge E., Lognay G. 2009. Fast gas chromatography characterization of purified semiochemicals from essential oils of Matricaria chamomilla L. (Asteraceae) and Nepetacataria L. (Lamiaceae). Journal of Chromatography A. 1216 (14): 2768–2775. DOI: 09.109.
Hussain A., Phillips T.W., Mayhew T.J., AliNiazee M.T. 1994. Pheromone biology and factors affecting its production in Tribolium castaneum. p. 533–536. In: Proceedings of the 6th International Working Conference on Stored Product Protection (E. Highley, E.J. Wright, H.J. Banks, B.R. Champ, eds.). Canberra, Australia. Available on: [Accessed: September 10, 2018].
Jones B.C., Evenden M.L. 2008. Ecological applications for pheromone trapping of Malacosoma disstria and Choristoneura conflictana. The Canadian Entomologist 140 (5): 573–581. DOI:
Karlson P., Butenandt A. 1959. Pheromones (Ectohormones) in insects. Annual Review of Entomology 4: 39–58. DOI:
Karlson P., Lüscher M. 1959. “Pheromones” a new term for a class of biologically active substances. Nature (London) 183: 55–56. DOI:
Khan Z.R., Pickett J.A. 2004. The ‘Push–Pull’ strategy for stem borer management: a case study in exploiting biodiversity and chemical ecology. p. 155–164. In: “Ecological Engineering for Pest Management: Advances in Habitat Manipulations for Arthropods” (G. Gurr, S.D. Waratten, M.A. Altieri, eds.). CABI Publishing, Oxfordshire, UK.
Khan Z.R., Midega C.A.O., Bruce T.J.A., Hooper A.M., Pickett J.A. 2010. Exploiting phytochemicals for developing a ‘push-pull’ crop protection strategy for cereal farmers in Africa. Journal of Experimental Botany 61 (15): 4185–4196.
Knipling E.F. 1979. The Basic Principles of Insect Populations Suppression and Management. Agriculture. Agriculture Handbook No. 512, USDA, Washington DC, USA, 659 pp.
Kogan M. 1982. Plant resistance in pest management.p. 93–134. In: “Introduction to Insect Pest Management” (R.L. Metcalf, W.H. Luckmann, eds.). John Wiley and Sons, New York, 672 pp.
Larsson M.C. 2016. Pheromones and other semiochemicals for monitoring rare and endangered species. Journal of Chemical Ecology 42 (9): 853–868. DOI: 10.1007/s10886-016-0753-4.
Levi-Zada A., Sadowsky A., Dobrinin S., Ticuchinski T., David M., Fefer D., Dunkelblum E., Byers J.A. 2018. Monitoring and mass-trapping methodologies using pheromones: the lesser date moth Batrachedra amydraula. Bulletin of Entomological Research 108 (1): 58–68. DOI:
Lewis W.J., Martin W.R. 1990. Semiochemicals for use with parasitoids: status and future. Journal of Chemical Ecology 16 (11): 3067–3089. DOI:
Lindgren B.S., Miller D.R. 2002. Effect of verbenone on five species of bark beetles (Coleoptera: Scolytidae) in lodgepole pine forests. Environmental Entomology 31 (5): 759–765. DOI:
Mafra-Neto A., Fettig C.J., Unson A.S., Rodriguez-Saona C., Holdcraft R., Faleiro J.R., El-Shafie H., Reinke M., Bernardi C., Villagran K.M. 2014. Development of specialized pheromone and lure application technologies (SPLAT®) for management of Coleopteran pests in agricultural and forestsystems. Chapter 15. p. 214−242. In: “Biopesticides: State of the Art and Future Opportunities” (A.D. Gross, J.R. Coats, S.O. Duke, J.N. Seiber, eds.). ACS Symposium Series Vol. 1172: American Chemical Society. Washington, DC, 291 pp. DOI: 10.1021/bk-2014-1172.ch015
McDonough L.M., Aller W.C., Knight A.L. 1992. Performance characteristics of a commercial controlled release dispenser of sex pheromones for control of codling moth (Cydiapo monella) by mating disruption. Journal of Chemical Ecology 18 (12): 2177–2189. DOI:
McPheron L.J., Seybold S.J., Storer A.J., Wood D.L., Ohtsuka T., Kubo I. 1997. Effects of enantiomeric blend of verbenone on response of Ips paraconfusus to naturally produced aggregation pheromone in the laboratory. Journal of Chemical Ecology 23 (12): 2825–2839. DOI:
Meer R.K.V., Preston C.A. 2008. Social Insect Pheromones. p. 223−262. In: “Encyclopedia of Entomology” (J.L. Capinera, ed.). Springer, Dordrecht, 262 pp. DOI:
Miller D.R., Rabaglia R.J. 2009. Ethanol and (-)-alpha-pinene: attractant kairomones for bark and ambrosia beetles in the southeastern US. Journal of Chemical Ecology 35 (4): 435–448. DOI:
Miller J.R., Strickler K.L. 1984. Finding and accepting host plants. p. 127–157. In: ”Chemical Ecology of Insects” (W.J. Bell, R.T. Cardé eds.). Springer, Boston, MA. 523 pp. DOI:
Miller J.R., Cowles R.S. 1990. Stimulo-deterrent diversion: a concept and its possible application to onion maggot control. Journal of Chemical Ecology 16 (11): 3197–3212. DOI:
Moawad S.S., Al.-Barty A., Al-Otaibi N.J. 2012. Behavioural response of Antacanthotermes ochraceus towards some bates and volatile oils. Journal of Agricultural Science and Technology B2: 1279–1286. DOI:
Morrison W.R., Lee D.H., Reissig W.H., Combs D., Leahy K., Tuttle A., Cooley D., Leskey T.C. 2016. Inclusion of specialist and generalist stimuli in attract-and-kill programs: Their relative efficacy in apple maggot fly (Diptera: Tephritidae) pest management. Environmental Entomology 45 (4): 974–982. DOI:
Nishida R. 2002. Sequestration of defensive substances from plants by Lepidoptera. Annual Review of Entomology 47: 57–92. DOI:
Nordlund D.A., Lewis W.J. 1976. Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. Journal of Chemical Ecology 2 (2): 211–220. DOI:
Phillips T.W. 1994. Pheromones of stored-product insects: current status and future perspectives. p. 479–486. In: Proceedings of the 6th International Working Conference on Stored Product Protection (E. Highley, E.J. Wright, H.J. Banks, B.R. Champ). Canberra, Australia, 1274 pp.
Phillips T.W. 1997. Semiochemicals of stored-product insects: research and applications. Journal of Stored Product Research 33 (1): 17–30. DOI:
Piñero J.C., Dudenhoeffer A.P. 2018. Mass trapping designs for organic control of the Japanese beetle, Popillia japonica (Coleoptera: Scarabaeidae). Pest Management Science 74 (7): 1687–1693. DOI:
Poland T.M., Borden J.H. 1997. Attraction of a bark beetle predator, Thanasimus undatulus (Coleoptera: Cleridae), to pheromones of the spruce beetle and two secondary bark beetles (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia 94: 35–41.
Prokopy R.J., Averill A.L., Bardinelli C.M., Bowdan E.S., Cooley S.S., Crnjar R.M., Dundulis E.A., Roitberg C.A., Spatcher P.J., Tumlinson J.H., Weeks B.L. 1982. Site of production of an oviposition-deterring pheromone component in Rhagoletis pomonella flies. Journal of Insect Physiology 28 (1): 1–10. DOI:
Prokopy R.J., Roitberg B.D., Averill A.L. 1984. Chemical mediation of resource partitioning in insects. p. 301–330. In: “The Chemical Ecology of Insects” (W.J. Bell, R.T. Cardé, eds.). Chapman and Hall, London, 523 pp.
Prokopy R.J., Wright S.E., Black J.L., Hu X.P., McGuire M.R. 2000. Attracticidal spheres for controlling apple maggot flies commercial-orchard trials. Entomologia Experimentalis et Applicata 97 (3): 293–299. DOI:
Pureswaran D.S., Gries R., Borden J.H. 2004. Antennal responses of four species of tree-killing bark beetles (Coleoptera: Scolytidae) to volatiles collected from beetles, and their host and nonhost conifers. Chemoecology 14 (2): 59–66. DOI:
Raina Κ.Α., Bland J.M., Dickens J.C., Park Y.I., Hollister B.J. 2003. Premating behavior of dealates of the Formosan subterranean termite and evidence for the presence of a contact sex pheromone. Journal of Insect Behavior 16 (2): 233–245. DOI:
Reddy G.V.P., Guerrero A. 2004. Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science 9 (5): 253–261. DOI:
Rhainds M., Kettela E.G., Silk P.J. 2012. Thirty five years of pheromone-based mating disruption studies with Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). The Canadian Entomologist 144 (3): 379–395. DOI:
Rhainds M., Therrien P., Morneau L. 2016. Pheromone-based monitoring of spruce budworm (Lepidoptera: Tortricidae) larvae in relation to trap position. Journal of Economic Entomology 109 (2): 717–723. DOI:
Salib J.Y., El-Toumy S.A., Hassan E.M., Shafik N.H., Abdel-Latif S.M., Brouard I. 2014. New quinoline alkaloid from Ruta graveolens aerial parts and evaluation of the antifertility activity. Natural Product Research 28 (17): 1335–1342. DOI: 14786419.2014.903395.
Singer M.C. 1986. The definition and measurementof oviposition preference in plant-feeding insects. p. 65−94. In: “Insect-Plant Interactions” (J.R. Miller, T.A. Miller, eds.). Springer Series in Experimental Entomology. Springer, New York, NY, 342 pp. DOI:–1–....
Stelinski L.L. 2007. On the physiological and behavioral mechanisms of pheromone-based mating disruption. Pestycydy 3 (4): 27–32.
Stelinski L.L., Liburd O.E. 2001. Evaluation of various deployment strategies of imidacloprid-treated spheres in highbush blueberries for control of Rhagoletis mendax (Diptera: Tephritidae). Journal of Economic Entomology 94 (4): 905–910. DOI:
Stelinski L.L., Oakleaf R., Rodriguez-Saona C. 2007. Ovipositiondeterring pheromone deposited on blueberry fruit by the parasitic wasp, Diachasma alloeum. Behaviour 144 (4): 429–445. DOI:
Turlings T.C.J., Tumlinson J.H., Lewis W.J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250 (4985): 1251–1253. DOI: 10.1126/science.250.4985.1251.
Vandermoten S., Mescher M.C., Francis F., Haubruge E., Verheggen F.J. 2012. Aphid alarm pheromone: An overview of current knowledge on biosynthesis and functions. Insect Biochemistry and Molecular Biology 42 (3): 155–163. DOI: j.ibmb.2011.11.008.
Vilela E.F., Della Lucia M.T. 2001. Feromônios de insetos: biologia, química e emprego no manejo de pragas. [Insect Pheromones: Biology, Chemistry and Employment in Pest Management]. 2nd ed. Holos Publishing House, Ribeirão Preto, Brazil, 206 pp. (in Portuguese).
Wallingford A.K., Cha D.H., Loeb G.M. 2017. Evaluating a push-pull strategy for management of Drosophila suzukii Matsumura in red raspberry. Pest Management Science 74 (1): 120–125. DOI:
Weatherston I., Minks A.K.1995. Regulation of semiochemicals – global aspects. Integrated Pest Management Reviews 1 (1): 1–13. DOI:
Weinzierl R., Henn T., Koehler P.G., Tucker C.L. 2005. Insect attractants and traps. University of Florida IFAS Extension. 9 pp. Available on: IR00002794/00001 [Accessed: September 10, 2018].
Wilson E.O. 1971. The Insect Societies. The Belknap Press of Harvard University Press, Cambridge, MA, USA, 562 pp.
Witzgall P., Kirsch P., Cork A. 2010. Sex pheromones and their impact on pest management. Journal of Chemical Ecology 36 (1): 80–100. DOI:
Zauli A., Chiari S., Hedenstrom E., Svensson G.P., Carpaneto G.M. 2014. Using odour traps for population monitoring and dispersal analysis of the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus in central Italy. Journal of Insect Conservation 18 (5): 801–813. DOI:
Zhu B.C.R., Henderson G., Sauer A.M., Yu Y., Crowe W., Laine R.A. 2003. Structure-activity of valencenoid derivatives and their repellency on the Formosan subterranean termite. Journal of Chemical Ecology 29 (12): 2695–2701. DOI: B:JOEC.0000008013.07845.4c.