ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Mass production manner (solid state fermentation or liquid fermentation) effect on stability and pathogenicity of entomopathogenic fungus.
  • The aerial conidia and blastospores are slightly more virulent comparing the submerged conidia on whitefly nymphs.
  • Blastospores are as pathogenic as the aerial conidia on whiteflies nymphs. However, their survival rate is lower, especially in dry and hot conditions.
KEYWORDS
TOPICS
ABSTRACT
In order to use entomopathogenic fungi (EPF) as biological control agents, it is necessary to mass produce the EPF in an economical and cost-effective manner. Currently, the mass production of EPF is carried out mainly in two ways: solid-state fermentation in which the aerial conidia are produced, and liquid fermentation in which the blastospores and submerged conidia are produced. This research compares the survival of Beauveria bassiana A1-1spores from solid and liquid culture media, after 0, 3, 6 and 9 months of storage at room temperature (25 ± 5°C) and in the refrigerator (4°C). Furthermore, it compares the pathogenicity of spores immediately after production and after 9 months of storage on third nymphs of greenhouse whitefly, Trialeurodes vaporariorum. The aerial conidia and blastospores were slightly more virulent than the submerged conidia on whitefly nymphs. In laboratory bioassays, blastospores indicated more pathogenicity on nymphs than submerged conidia, even though there was no significant difference in the pathogenicity of the spores produced in liquid culture media in greenhouse bioassays. Moreover, survival of the aerial conidia at a low temperature (4°C) was higher than that kept at room temperature (25 ± 5°C). This storage temperature comparison revealed a positive effect on the stability and survival of blastospores and submerged conidia as well. Meanwhile, the survival of spores drastically decreased after 3 months of storage at room temperature.
FUNDING
This work was supported by the Iranian Research Institute of Plant Protection, Tehran under Project Number 2-16-16-017-990063.
RESPONSIBLE EDITOR
Krzysztof Krawczyk
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (39)
1.
Abas B.A., Diwan H.M., Hemid H., Aboud F.H. 2014. Effects of some cultural media and temperatures on viability of Beauveria bassiana (Bals.) Vuill. after different storage periods. Journal of Biotechnology Research Center 8 (3): 76–80. DOI: https://doi.org/10.24126/jobrc....
 
2.
Albrecht D., Guthke R., Brakhage A.A., Kniemeyer O. 2010. Integrative analysis of the heat shock response in Aspergillus fumigatus. BMC Genomics 11 (1): 1–17. DOI: 10.1186/1471-2164-11-32.
 
3.
Aregger E. 1992. Conidia production of the fungus Beauveria brongniartii on barley and quality evaluation during storage at 2°C. Journal of Invertebrate Pathology 59 (1): 2–10. DOI: 10.1016/0022-2011(92)90104-C.
 
4.
Bakar N.A., Karsani S.A., Alias S.A. 2020. Fungal survival under temperature stress: a proteomic perspective. PeerJ 8: e10423. DOI: 10.7717/peerj.10423.
 
5.
Bi J.L., Tosccano N.C. 2007. Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in Southern California. Pest Management Science 63 (8): 747‒752. DOI: 10.1002/ps.1405.
 
6.
Bidochka M.J., Pfeifer T.A., Khachatourians G.G. 1987. Development of the entomopathogenic fungus Beauveria bassiana in liquid cultures. Mycopathologia 99: 77–83. DOI:10.1007/BF00436909.
 
7.
Blanford S., Jenkins N.E., Christian R., Chan B.H., Nardini L., Osae M., Koekemoer L., Coetzee M., Read A.F., Thomas M.B. 2012. Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors. Malaria Journal 11 (1): 354. DOI: 10.1186/1475-2875-11-354.
 
8.
Capinera J.L. 2008. Greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). p. 1835‒1840. In: “Encyclopedia of Entomology” (J.L. Capinera, ed.). 2nd ed. Kluwer Academic Publishers. DOI: https://doi.org/10.1007/978-1-....
 
9.
Chen C.J., Wu J.W., Li Z.Z., Wang Z.X., Li Y.W., Chang S.H., Yin F.M., Wang X.P., Dai L.Y., Tao L., Zhang Y.A., Tang J., Ding S., Ding G.G., Gao Z.H., Tan Y.C. 1990. Application of microbial pesticides in IPM. p. 214–308. In: “Integrated Management of Pine Caterpillars in China” (Chen C.J., ed.). China Forestry Publishing House, Beijing, China.
 
10.
Dietsch R., Jakobs-Schönwandt D., Grünberger A., Patel A. 2021. Desiccation-tolerant fungal blastospores: From production to application. Current Research in Biotechnology 3: 323–339. DOI: https://doi.org/10.1016/j.crbi....
 
11.
Faria M., Hajek A.E., Wraight S.P. 2009. Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium acridum, and Metarhizium anisopliae. Biological Control 51: 346–354. DOI: https://doi.org/10.1016/jbioco....
 
12.
Feng M.G., Poprawski T.J., Khachatourians G.G. 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Science and Technology 4 (1): 3–34. DOI: https://doi.org/10.1080/095831....
 
13.
Glare T., Caradus J., Gelernter W., Jackson T., Keyhani N., Köhl J., Marrone P., Morin L., Stewart A. 2012. Have biopesticides come of age? Trends Biotechnology 30: 250–258. DOI: https://doi.org/10.1016/j.tibt....
 
14.
Grijalba E.P., Espinel C., Cuartas P.E., Chaparro M.L., Villamizar L.F. 2018. Metarhizium rileyi biopesticide to control Spodoptera frugiperda: Stability and insecticidal activity under glasshouse conditions. Fungal Biology 122 (11): 1069–1076. DOI: https://doi.org/10.1016/j.funb....
 
15.
Gorman K., Devine G.J., Bennison J., Coussons P., Punchard N., Denholm I. 2007. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Pest Management Science 63 (6): 555‒558. DOI: 10.1002/ps.1364.
 
16.
Hegedus D.D., Bidochka M.J., Miranpuri G.S., Khachatourians G.G. 1992. A comparison of the virulence, stability and cell-wall-surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Applied Microbiology and Biotechnology 36: 785‒789. DOI:10.1007/BF00172195.
 
17.
Holder D.J., Keyhani N.O. 2005. Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Applied and Environmental Microbiology 71: 5260–5266. DOI: 10.1128/AEM.71.9.5260-5266.2005.
 
18.
Jackson M.A. 1997. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. Journal of Industrial Microbiology & Biotechnology 19:180‒187. DOI:10.1038/sj.jim.2900426.
 
19.
Jackson M.A., Dunlap C.A., Jaronski S.T. 2010. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 55: 129‒145. DOI:10.1007/s10526-009-9240-y.
 
20.
Javar S., Farrokhi S., Asgari B., Parsi F. 2020. Investigating on the potential of local isolates of entomopathogenic fungi as biological control agents against greenhouse whitefly Trialeurodes vaporariorum, BioControl in Plant Protection 7 (1): 127‒142. DOI: 10.22092/bcpp.2019.121741.
 
21.
Kassa A., Brownbridge M., Parker B.L., Skinner M., Gouli V., Gouli S., Guo M., Lee F., Hata T. 2008. Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Mycological Research 112 (5): 583–591. DOI: 10.1016/j.mycres.2007.12.004.
 
22.
Kim J.Ch., Lee M.R., Kim S., Lee S.J., Park S.E., Baek S., Gasmi L., Shin T.Y., Kim J.S. 2019. Long-term storage stability of Beauveria bassiana ERL836 granules as fungal biopesticide. Journal of Asia-Pacific Entomology 22: 537–542. DOI: https://doi.org/10.1016/j.aspe....
 
23.
Lacey L.A., Kirk A.A., Millar L., Mercadier G., Vidal C. 1999. Ovicidal and larvicidal activity of conidia and blastospores of Paecilomyces fumosoroseus (Deuteromycotina: hyphomycetes) against Bemisia argentifolii (Homoptera: Aleyrodidae) with a description of a bioassay system allowing prolonged survival of control insects. Journal of Biocontrol Science and Technology 9: 9–18. DOI: https://doi.org/10.1080/095831....
 
24.
Li Y., Dennehy T.J., Li X., Wigert M.E. 2000. Susceptibility of Arizona whiteflies to chloronicotinyl insecticides and IGRs: new developments in the 1999 season. p. 1325‒1330. Proceedings of the Beltwide Cotton Conferences.
 
25.
Lohse R., Jakobs-Schönwandt D, Patel A.V. 2014. Screening of liquid media and fermentation of an endophytic Beauveria bassiana strain in a bioreactor. AMB Express 4: 47. DOI: http://www.amb-express.com/con....
 
26.
Lopes R.B., Faria M. 2019. Influence of two formulation types and moisture levels on the storage stability and insecticidal activity of Beauveria bassiana. Biocontrol Science and Technology 29 (5): 437–450. DOI: https://doi.org/10.1080/095831....
 
27.
MacLeod D.M. 1954. Investigations on the genera Beauveria Vuill and Tritirachium Limber. Canadian Journal of Botany 32: 818–890. DOI: 10.1139/b54-070.
 
28.
Mascarin G.M., Jaronski S.T. 2016. The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology & Biotechnology 32 (11): 1‒26. DOI: 10.1007/s11274-016-2131-3.
 
29.
Mascarin G.M., Jackson M.A., Behle R.W., Kobori N.N., Júnior I.D. 2016. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes. Applied Microbiology and Biotechnology 100 (19): 8359–8370. DOI: 10.1007/s00253-016-7597-2.
 
30.
Mascarin G.M., Jackson M.A., Kobori N.N., Behle R.W., Júnior I.D. 2015. Liquid culture fermentation for rapid production of desiccation tolerant blastospores of Beauveria bassiana and Isaria fumosorosea strains. Journal of Invertebrate Pathology 127: 11–20. DOI: https://doi.org/10.1016/j.jip.....
 
31.
Mascarin G.M., Kobori N.N., Jackson M.A., Dunlap C.A., Delalibera I. 2018. Nitrogen sources affect productivity, desiccation tolerance and storage stability of Beauveria bassiana blastospores. Journal of Applied Microbiology 124 (3): 810–820. DOI: 10.1111/jam.13694.
 
32.
McNeil B., Harvey L.M. 2008. Practical Fermentation Technology. John Wiley & Sons, Ltd. DOI: 10.1002/9780470725306.
 
33.
Oreste M., Bubici G., Poliseno M., Tarasco E. 2016. Effect of Beauveria bassiana and Metarhizium anisopliae on the Trialeurodes vaporariorum-Encarsia formosa system. Journal of Pest Science 89 (1): 153–160. DOI:10.1007/s10340-015--0660-4.
 
34.
Padmanaban B., Thangavelu R., Gopi M., Mustaffa M.M. 2009. Effect of mass multiplication media on sporulation, field efficacy and shelf life of Beauveria bassiana against rhizome and pseudostem weevils of banana. Journal of Biological Control 23 (3): 277–283. DOI: https://doi.org/10.18311/jbc/2....
 
35.
Rashid M., Talaei-Hassanloui R., Khodaiyan F., Goettel M. 2019. Potential use of some liquid natural media for the production of blastospores of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Iranian Journal of Biosystem Engineering 50 (2): 489–497. DOI: 10.22059/ijbse.2019.271507.665131.
 
36.
Rombach M.C. 1988. Production of Beauveria bassiana (Deuteromycotina; Hyphomycetes) sympoduloconidia in submerged culture. Entomophaga 33: 315–324. DOI: https://doi.org/10.1007/BF0237....
 
37.
Roshandel S., Askary H., Talaei Hassanlouei R., Allahyari H. 2016. The effects of natural substrates on the sporulation and viability of conidia and blastospores of Metarhizium anisopliae. Biocontrol in Plant Protection 4 (1): 94–104. DOI: BCPP-1508-49 (R2).
 
38.
Sandhu S.S., Rajak R.C, Agarwal G.P. 1993. Studies on prolonged storage of Beauveria bassiana conidia: Effects of temperature and relative humidity on conidial viability and virulence against chickpea borer, Helicoverpa armigera. Biocontrol Science and Technology 3: 47–53. DOI: https://doi.org/10.1080/095831....
 
39.
Thomas K.C., Khachatourians G.G., Ingledew W.M. 1987. Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Canadian Journal of Microbiology 33: 12‒20. DOI:10.1139/m87-003.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top