• Development of stress tolerant transgenomic trait in sugar beet.
  • Genetic orientation and transformation in sugarbeet.
  • Novel genetic transformation through biotechnological application.
Sugar beet (Beta vulgaris L.) has emerged as an alternative to sugarcane. It is mainly utilized for sugar extraction and has significant industrial value with great nutritional impact. Different kinds of biotic and abiotic stresses are considered to be major barriers for sugar beet cultivation. As per the current scenario, every year sugar beet production suffers huge yield losses due to various stresses. The conventional breeding technique is a time-consuming lengthy procedure which can be replaced by a genetic transformation technique to bring new transgenic traits within a short period of time. Sugar beet has proven to be excellent sample material for in vitro culture of haploid plants, protoplast culture, somaclonal variation, and single cell culture, among others. Agrobacterium mediated and PEG-mediated transformations are the most effective genomic transformations in the case of sugar beet. Development of new traits in terms of fungus/virus, pest/nematode tolerance, herbicide and salt tolerance are the most frequently expected traits in the current scenario of sugar beet production. Potential transgenic plants are viable alternatives to traditional expression systems for end product (protein) development with more accuracy. So, transgenic production through genome editing/base editing is presently considered to be one of the best tools for sugar beet tolerant traits development. Food safety and environmental impacts are two major concerns of genetic transformation in sugar beet and need to be appropriately screened for public health acceptability.
Karlos Lisboa
The authors have declared that no conflict of interests exist.
Abou-Elwafa S.F., Amin A.E. E.A., Eujayl I. 2020. Genetic diversity of sugar beet under heat stress and deficit irrigation. Agronomy Journal 112: 3579–3590. DOI: 10.1002/agj2.20356.
Barker A.L., Dayan F.E. 2019. Fate of glyphosate during production and processing of glyphosate-resistant sugar beet (Beta vulgaris). ACS Publications. Journal of Agriculture and Food Chemistry 67: 2061−2065. DOI: 10.1021/acs.jafc.8b05672.
Bennett R., Phipps R., Strange A., Grey P. 2004. Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment. Plant Biotechnol Journal 2: 273–278.
Boland G.J., M.S Melzer A., Hopkin V.H., Nassuth A. 2004. Climate change and plant diseases in Ontario. Canadian Journal of Plant Pathology 26 (3): 335–350.
Brendler F., Holtschulte B., Rieckmann W. 2008. Zuckerrübe. Krankheiten, Schädlinge, Unkräuter, 2nd Edn. Bonn: Agro Concept.
Cai D.G., Thurau T., Tian Y., Lange T., Yen K.W., Jung C. 2003. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Molecular Biology 51: 839–849.
Correa E.A., Dayan F.E., Owens D.K., Rimando A.M., ̂Duke S.O. 2016. Glyphosate-resistant and conventional canola (Brassica napus L.) responses to glyphosate and aminomethyl phosphonic acid (AMPA) treatment. Journal of Agriculture and Food Chemistry 64 (18): 3508−3513.
Dally N., Xiao K., Holtgräwe D., Jung C. 2014. The B2 flowering time locus of beet encodes a zinc finger transcription factor. Proceedings of the Natural Academy of Sciences U.S.A. 111: 10365–10370. DOI: 10.1073/pnas.1404829111.
Das S., Pattanayak S. 2022. Soil-borne pathogen mediated root rot diseases of sugar beet and their management. p. 591–605. In: “Sugar Beet Cultivation, Management and Processing”.
Dimmer E., Roden L., Cai D.G., Kingsnorth C., Mutasa-Gottgens E. 2004. Transgenic analysis of sugar beet xyloglucan endotransglucosylase/ hydrolase Bv-XTHl and Bv-XTH2 promoters reveals overlapping tissue specific and wound-inducible expression profiles. Plant Biotechnology Journal 2: 127–139.
Draycott A.P. 2006. Introduction. p. 1–8. In: “Sugar Beet” (Draycott A P., ed.). Blackwell, Oxford.
Ferweez H., Bashandy T. 2021. Screening for drought tolerance and molecular variability among some sugar beet cultivars. SVU-International Journal of Agricultural Science 3 (4): 20–29. DOI: 10.21608/svuijas.2021.88797.1130.
Flavell R.B. 2004. Intoduction to Plant Biotechnology. p. 31–37. In: “Handbook of Plant Biotechnology” (Christou P., Klee H., eds.) John Wiley and Sons Ltd. West Sussex, England.
Fufa H., Baenziger P.S., Beecher B.S., Dweikat I., Graybosch R.A., Eskridge K.M. 2005. ‘Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars’. Euphytica 145 (1): 133–146.
Geng G., Lv C., Stevanato P., Li R., Liu H., Yu L., Wang Y. 2019. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. International Journal of Molecular Sciences 20: 5910.
Gelvin S.B. 2003. Agrobacterium- Mediated plant transformation: the biology behind the “Gene-jockeying” tool. Microbiology. Molecular Biology Review 67 (1): 16–37.
Ghaffari H., Tadayon M.R., Bahador M., Razmjoo J. 2021. Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions. Agriculture and Water Management 243: 106448.
Gilmer D., Ratti C., Consortium I.R. 2017. ICTV virus taxonomy profile: Benyviridae. Journal of General Virology 98: 1571–1572. DOI: 10.1099/jgv.0.000864.
Gisbert C., Timoneda A., Porcel R., Ros R., Mulet J.M. 2020. Overexpression of BvHb2, a class 2 non-symbiotic hemoglobin from sugar beet, confers drought-induced withering resistance and alters iron content in tomato. Agronomy 10: 1754.
Gurel E., Gurel S., Lemaux P.G. 2008. Biotechnology applications for sugar beet. Critical Reviews in Plant Sciences 27 (2): 108–140. DOI:
Gummert A., Ladewig E., Bürcky K., Märländer B. 2015. Variety resistance to Cercospora leaf spot and fungicide application as tools of integrated pest management in sugar beet cultivation – A German case study. Crop Protection 72: 182–194. DOI: 10.1016/j.cropro.2015.02.024.
Guo M., Liu J-H., Ma X., Luo D-X., Gong Z-H., Lu M-H. 2016. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Sciences 7: 114. DOI: 10.3389/fpls.2016.00114.
Hall R.D., Riksen-Bruinsma T., Weyens G., Rosquin I.J., Denys P.N., Evans I.J., Lathouwers J.E., Lefebvre M., Dunwell J.M., Tunnen A. van, Krens F.A. 1996. A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells. Nature Biotechnology 14: 1133–1138.
Hashimoto R., Shimamoto Y. 2001. Transgenic sugar beet plants harboring a pumpkin chitinase gene demonstrating improved resistance to Rhizoctonia solani. Proceedings of Japan Society of Sugar Beet Technollogy 43: 24–28.
Hiei Y., Ishida Y., Kasaoka K., Komari T. 2006. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tissue and Organ Culture 87: 233–243.
Hoffmann C.M., Kenter C. 2018. Yield potential of sugar beet – have we hit the ceiling? Frontiers of Plant Sciences 9: 289 DOI: 10.3389/fpls.2018.00289.
Holmquist L., Dolofrs F., Fogelqvist J., Cohn J., Kraft T., Dixelius C. 2021. Major latex protein‑like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Molecular Genetics and Genomics 296: 155–164. DOI:
Ismail R.M., Youssef A.B., EL-Assal S.E.-D., Tawfik M.S., Abdallah N.A. 2020. Cloning and characterization of Heat shock factor (BvHSF) from Sugar Beet (Beta vulgaris). Plant Archives 20: 3725–3733.
Ivic-Haymes S.D., Smigocki A.C. 2005. Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.) leaves. Plant Cell Reporter 23: 699–704.
James C. 2013. Global Status of Commercialized Biotech/GM Crops: ISAAA Brief No. 46. Ithaca, NY: International Service for the Acquisition of Agri-Biotech Applications (ISAAA).
Kazerooni E.A., Rethinasamy V., Al-Sadi A.M. 2019. Talaromyces pinophilus inhibits Pythium and Rhizoctonia-induced damping off of cucumber. Journal of Plant Pathology 101: 377–383.
Kimoto Y. and Shimamoto Y. 2002. Difference in toxicity to larvae of cabbage armyworm between transgenic sugar beet lines with Cry1Ab and Cry1C. J P Soc Sugar Beet Technology 43:20-23.
Kuykendall L.D., Upchurch R.G. 2004. Expression in sugar beet of the introduced cercosporin toxin export (CFP) gene from Cercospora kikuchii, the causative organism of purple seed stain in soybean. Biotechnology Letters 26: 723–727.
Lathouwers J., Weyens G., Lefebvre M. 2005. Transgenic research in sugar beet. p. 5–24. In: “Advances in Sugar Beet Research”. Volume 6: “Genetic Modification in Sugar Beet” (Pidgeon J., Molard M.R., Wevers J.D.A., Beckers R., eds.). IIRB, Belgium.
Lafta A.M., Fugate K.K. 2011. Metabolic profile of wound-induced changes in primary carbon metabolism in sugar beet root. Phytochemistry 72: 476–489. DOI: 10.1016/j.phytochem.2010.12.016.
Liebe S., Wibberg D., Maiss E., Varrelmann M. 2020. Application of a reverse genetic system for Beet necrotic yellow vein virus to study Rz1 resistance response in sugar beet. Frontiers in Plant Science 10: 1703.
Litvin D.I., Sivura V.V., Kurilo V.V., Oleneva V.D., Emets A.I., Blium La B. 2014. Creation of transgenic sugar beet lines expressing insect pest resistance genes cry1C and cry2A. Tsitol Genetics 48 (2): 3–11.
Lv X., Chen S., Wang Y. 2019. Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Frontiers in Plant Sciences 10: 1431.
Ma Y., Dias M.C., Freitas H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Sciences 11: 591911.
Madsen K.H., Sandoe P. 2001. Herbicide resistant sugar beet – what is the problem? Journal Agricultural Environmental Ethics 14:161–168.
Mark A., Jacob J.R. 2021. Movento hl® as a postemergence rescue insecticide for Sugar beet root maggot control. Sugar beet Research And Extension Reports: 91–94.
Mathur V., Javid L., Kulshrestha S., Mandal A., Reddy A.A. 2017. World cultivation of genetically modified crops: opportunities and risks. p.45–87. In: “Sustainable Agriculture Reviews”. DOI: 10.1007/978-3-319-58679-3_2.
Meier P., Wackernagel W. 2003. Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri. Transgenic Research 12: 293–304.
Menzel G., Harloff H.J., Jung C. 2003. Expression of bacterial poly (3- hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Appled Microbiology and Biotechnology 60: 571–576.
Moazami-Goodarzi K., Mortazavi S., Heidari B., Norouzi P. 2020. Optimization of agrobacterium-mediated transformation of sugar beet: Glyphosate and insect pests resistance associated genes. Agronomy Journal 112 (6): 4558–4567.
Norouzi P., Malboobi M.A., Zamani K., Yazdi-Samadi B. 2005. Using a competent tissue for efficient transformation of sugar beet (Beta vulgaris L.) In Vitro Cell. Developmental. Biology of Plants 41: 11–16.
Nyaboga E.N., Njiru J.M., Tripathi L. 2015. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14. Frontiers in Plant Science 6: 411.
Onde S., Birsin M., Yildiz M., Sancak C., Ozgen M. 2000. Transfer of a beta-glucuronidase reporter gene to Sugar beet (Beta vulgaris L.) via microprojectile bombardment. Turkish Journal of Agricultural Forestry 24: 487–490.
Panella L., Lewellen R.T. 2007. Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154: 383–400.
Pinheiro C., Ribeiro I.C., Reisinger V., Planchon S., Veloso M.M., Renaut J., Eichacker L., Ricardo C.P. 2018. Salinity effect on germination, seedling growth and cotyledon membrane complexes of a Portuguese salt marsh wild beet ecotype. Theory of Experimental Plant Physiology 30: 113–127.
Privalle L.S. 2002. Phosphomannose isomerase, a novel plant selection system. Annals of New York Academy of Sciences Journal 964: 129–138.
Reuther M., Lang C., Grundler F.M.W. 2017. Nematode-tolerant sugar beet varieties – resistant or susceptible to the Beet Cyst Nematode Heterodera schachtii? Sugar Industry 142 (5): 277–284.
Safar S., Bazrafshan M., Khoshnami M., Behhrooz A.A., Hedayati F., Maleki M., Mahmoudi S.B., Ali Malboobi M. 2020. Field evaluation for rhizomania resistance of transgenic sugar beet events based on gene silencing. Canadian Journal of Plant Pathology 43 (1): 179–188. DOI:
Sedighi L., Rezapanah M., Aghdam H.R. 2011. Efficacy of Bt transgenic sugar beet lines expressing cry1Ab gene against Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae). Journal of the Entomological Research Society 13: 61.
Skaracis G.N., McGrath M. 2005. Molecular biology and biotechnology. In: Genetics and Breeding of Sugar Beet. p. 221–286. In: “Genetics and Breeding of Sugar Beet” (Biancardi E., Campbell L.G., Skaracis G.N., De Biaggi M., eds.). Science Publishers Inc, Enfield, NH.
Skorupa M., Golebiewski M., Kurnik K., Niedojadlo J., Kesy J., Klamkowski K., Wojcik K., Treder W., Tretyn A., Tyburski J. 2019. Salt stress vs. salt shock-the case of sugar beet and its halophytic ancestor. BMC Plant Biology 19: 57.
Smigocki A.C., Campbell L.G., Wozniak C.A. 2003. Leaf extracts from cytokinin-overproducing transgenic plants kill Sugar beet root maggot larvae. Journal of Sugar Beet Research 40: 197–207.
Smigocki A.C., Puthoff D.P., Ivic-Haymes S.D., Zuzga S. 2007. A Beta vulgaris serine proteinase inhibitor gene (bvsti) regulated by sugar beet root maggot feeding on moderately resistant f1016 roots. American Society of Sugar Beet Technology Proceedings 34: 143–150.
Storelli A., Keiser A., Kiewnick S., Daub M., Mahlein A-K., Beyer W., Schumann M. 2021a. Development of a new in vivo protocol through soil inoculation to investigate sugar beet resistance towards Ditylenchus dipsaci penetration. Nematology BRILL Publications 0: 1–10. DOI:
Storelli A., Kiewnick S., Daub M., Mahlcin A-K., Schumann M., Bayer W., Keiser A. 2021b. Virulence and pathogenicity of four Ditylenchus dipsaci populations on sugar beet. European Journal of Plant Pathology 161: 63–71. DOI:
Tamada T., Kondo H. 2013. Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors. Journal of General Plant Pathology 79: 307–320. DOI: 10.1007/s10327-013-0457-3.
Tatikonda L., Wani S.P., Kannan S., Beerelli N., Sreedevi T.K., Hoisington D.A., Devi P., Varshney R.A. 2009. ‘AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L. a biofuel plant’. Plant Sciences 176 (4): 505–513.
Thomas J.P., Alexa L.L., David M. 2020. Hooded sprayer for application of nonselective herbicides in Sugar beet. Sugar beet Research And Extension Reports: 2–6.
Uysal O., Cakiroglu C., Koc A., Karakaya H.C. 2017. Characterization of the BETA1 gene, which might play a role in Beta vulgaris subsp. maritima salt tolerance. Turkish Journal of Botany 41: 552–558.
Vasel E.H., Ladewig E., Märländer B. 2013. Auftreten von blattkrankheiten und schadinsekten sowie fungizid- und insektizidstrategien im zuckerrübenanbau in Deutschland. Journal of Kulturpflanzen 65: 37–49.
Vogel J., Kenter C., Holst C., Marlander B. 2018. New generation of resistant sugar beet varieties for advanced integrated management of Cercospora leaf spot in central Europe. Frontiers of Plant Sciences 9. DOI:
Wang Y., Wang S., Tian Y., Wang Q., Chen S., Li H., Ma C., Li H. 2021. Functional characterization of a sugar beet Bvb-HLH93 transcription factor in salt stress tolerance. International Journal of Molecular Sciences 22: 3669.
Weyens G., Ritsema T., Van Dun K., Meyer D., Lommel M., Lathouwers J., Rosquin I., Denys P., Tossens A., Nijs M., Turk S., Gerrits N., Bink S., Walraven B., Lefebvre M., Smeekens S. 2004. Production of tailormade fructans in sugar beet by expression of onion fructosyl transferase genes. Plant Biotechnology Journal 2: 321–327.
Wisniewska A., Andryka-Dudek P., Czerwinski M., Choluj D. 2019. Fodder beet is a reservoir of drought tolerance alleles for sugar beet breeding. Plant Physiology and Biochemistry 145: 120–131.
Wu G.Q., Liu Z.X., Xie L.L., Wang J.L. 2021. Genome-wide identification and expression analysis of the BvSnRK2 genes family in sugar beet (Beta vulgaris L.) under salt conditions. Journal of Plant Growth Regulator: 40.
Yang A., Zhu L., Zhao S., Zhang J. 2004. Induction of multiple bud clumps from inflorescence tips and regeneration of salt-tolerant plantlets in Beta vulgaris. Plant Cell Tissue and Organ Culture 77: 29–34.
Yang A.F., Duan X.G., Gu X.F., Gao F., Zhang J.R. 2005. Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance. Plant Cell Tissue and Organ Culture 83: 259–270.
Yolcu S., Alavilli H., Ganesh P., Panigrahy M., Song K. 2021. Salt and drought stress responses in cultivated beets (Beta vulgaris L.) and wild beet (Beta maritima L.). Plants 10: 1843.
Zakharchenko N.S., Kalyaeva M.A., Bur’yanov Y.I. 2000. The method for genetic transformation of different sugar beet varieties. Russian Journal of Plant Physiology 47: 70–75.
Zhang Y., Nan J., Yu B. 2016. OMICS technologies and applications in sugar beet. Frontiers in Plant Sciences 7: 900.
Zhang C.L., Xu D.C., Jiang X.C., Zhou Y., Cui J., Zhang C.X., Chen D.F., Fowler M.R., Elliott M.C., Scott N.W., Dewar A.M., Slater A. 2008. Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Annals of Applied Biology 152: 143–156.
Zhuzhzhalova T.P., Kolesnikova E.O., Vasilchenko E.N., Cherkasova N.N. 2020. Biotechnological methods as a tool for efficient sugar beet breeding. Vavilov Journal of Genetics and Breeding 24 (1): 40–47. DOI: 10.18699/VJ20.593.