Effect of Septoria leaf blotch and its control with commercial fungicides, on arbuscular-mycorrhizal-fungal colonization, spore numbers, and morphotype diversity
More details
Hide details
Facultad de Ciencias Agrarias y Forestales, UNLP, 60 y 119 (1900), La Plata, Buenos Aires, Argentina
Consejo National de Investigaciones Cientificas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ), Buenos Aires, Argentina
CEQUINOR (CCT-La Plata-CONICET-UNLP), 47 y 115 (1900), La Plata, Argentina
Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, UNLP, 53 # 477 (1900), La Plata, Buenos Aires, Argentina
Comisión de Investigaciones Cientificas de la Provincia de Buenos Aires (CICPBA), 526 entre 10 y 11 (1900), La Plata, Argentina
Submission date: 2013-11-12
Acceptance date: 2014-01-14
Corresponding author
Santiago Schalamuk
Facultad de Ciencias Agrarias y Forestales, UNLP, 60 y 119 (1900), La Plata, Buenos Aires, Argentina Consejo National de Investigaciones Cientificas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ), Buenos Aires, Argentina
Journal of Plant Protection Research 2014;54(1):9-14
Arbuscular-mycorrhizal internal structures (i.e. total root colonization, arbuscules, vesicles) and external structures (i.e. spore density), and Glomeromycota spore morphotypes, were evaluated in wheat severely infected with Mycosphaerella graminicola – the causal agent of Septoria leaf blotch. Plots in which the infection was controlled with a commercial fungicide at recommended field doses, were also examined. The commercial fungicide used was an admixture of trifloxistrobin and tebuconazole. No negative effects of the fungicide application on arbuscular-mycorrhizal fungi (AMF) were found. The M. graminicola fungicidal treatment actually favoured the formation of arbuscules and AMF spores, as there was a selective increase in the density of spores belonging to the glomoid morphotype. Arbuscular-mycorrhizal fungi have an absolute dependence on the carbon provided by the plant. A severe foliar disease leading to a diminished carbon supply to the roots would generate decreases in carbon availability. Such decreases would strongly affect mycorrhizal associations and development. Furthermore, the change in the green-leaf area produced by a severe foliar disease and/or a reversal of that condition through fungicide treatment could result in shifts in the composition of the AMF community so as to favour glomoid morphotypes. Glomoid species have been previously considered as r-strategists.
The authors have declared that no conflict of interests exist.
Bever J.D., Schultz P.A., Pringle A., Morton J.B. 2001. Arbuscular mycorrhizal fungi: More diverse than meets the eye, and the ecological tale of why. Bioscience 51 (11): 923–931.
Błaszkowski J., Kovács G.M., Balázs T. 2009. Glomus perpusillum, a new arbuscular mycorrhizal fungus. Mycologia 101 (2): 247–255.
Calonne M., Lounès-Hadj Sahraoui A., Campagnac E., Debiane D., Laruelle F., Grandmougin-Ferjani A., Fontaine J. 2012. Propiconazole inhibits the sterol 14α-demethylase in Glomus irregulare like in phytopathogenic fungi. Chemosphere 87 (4): 376–383.
Campagnac E., Fontaine J., Lounès-Hadj Sahraoui A., Laruelle F., Durand R., Grandmougin-Ferjani A. 2008. Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots. Phytochemistry 69 (17): 2912–2919.
Campagnac E., Fontaine J., Lounès-Hadj Sahraoui A., Laruelle F., Durand R., Grandmougin-Ferjani A. 2009. Fenpropimorph slows down the sterol pathway and the development of the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 19 (6): 365–374.
Chagnon P., Bradley R., Maherali H., Klironomos J. 2013. A traitbased framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18 (9): 484–491.
Denison F.R., Kiers E.T. 2011. Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr. Biol. 21 (18): 775–785.
De Souza F.A., Declerck S., Smit E., Kowalchuk G.A. 2005. Morphological, ontogenetic and molecular characterization of Scutellospora reticulata (Glomeromycota). Mycol. Res. 109 (6): 697–706.
Dick R.P., Thomas D.R., Turco R.F. 1996. Standarized methods, sampling and sampling treatment. p. 107–121. In: “Methods for Assessing Soil Quality” (J.W. Doran, A.J. Jones, eds.). Soil Science Society of America, Madison, Wisconsin, 410 pp.
Diedhiou P.M., Oerke E.C., Dehne H.W. 2004. Effect of the strobilurin fungicides azoxystrobin and kresoximmethyl on arbuscular mycorrhizal. J. Plant Dis. Prot. 111 (6): 545–556.
Eyal Z., Scharen A.L., Huffman M.D., Prescott J.M. 1985. Global insights into virulence frequencies of Mycosphaerella graminicola. Phytopathology 75 (12): 1456–1462.
Eyal Z., Scharen A.L., Prescott J.M., Van Ginkel M. 1987. The Septoria Diseases of Wheat: Concepts and Methods of Disease Management. CIMMYT, Mexico, DF, 52 pp.
Franke-Snyder M., Douds D.D.J., Galvez L., Philips J.G., Wagoner P., Drinkwater L., Morton J.B. 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania. Appl. Soil Ecol. 16 (1): 35–48.
Frey B., Vilarino A., Schuepp H., Arines J. 1994. Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol. Biochem. 26 (6): 711–717.
GenStat Release 12.1 ( PC/Windows XP). 2009. VSN International Ltd.
Gerdemann J.W., Nicolson T.H. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46 (2): 235–244.
Giovannetti M., Turrini A., Strani P., Sbrana C., Avio L., Pietrangeli B. 2006. Mycorrhizal fungi in ecotoxicological studies: soil impact of fungicides, insecticides and herbicides. Prevention Today 2 (1–2): 47–61.
Hodge A., Helgason T., Fitter A.H. 2010. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 3 (4): 267–273.
Homdork S., Fehrmann H., Beck R. 2000. Effects of field application of tebuconazole on yield, yield components and the mycotoxin content of Fusarium-infected wheat grain. J. Phytopathol. 148 (1): 1–6.
Ijdo M., Schtickzelle N., Cranenbrouck S., Declerck S. 2010. Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? FEMS Microbiol. Ecol. 72 (1): 114–122.
Kjoller R., Rosendahl S. 2000. Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol. Fertil. Soils 31 (5): 361–365.
Koske R.E., Tessier B. 1983. A convenient, permanent slide mounting medium. Mycol. Soc. Am. Newsl. 34 (2): 59.
Land S., von Alten H., Schonbeck F. 1993. The influence of host plant, nitrogen fertilization and fungicide application on the abundance and seasonal dynamics of vesiculararbuscular mycorrhizal fungi in arable soils of northern Germany. Mycorrhiza 2 (4): 157–166.
Lovelock C.E., Andersen K., Morton J.B. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135 (2): 268–279.
McGonigle T.P., Miller M.H., Evans D.G., Fairchild G.L., Swan J.A. 1990. A new method which gives an objective measure of colonization of roots by vesicular – arbuscular mycorrhizal fungi. New Phytol. 115 (3): 495–501.
Mohammad M.J., Pan W.L., Kennedy A.C. 1998. Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions. Mycorrhiza 8 (3): 139–144.
Mojerlou S., Safaie N., Alizadeh A., Khelghatibana F. 2009. Measuring and modeling crop loss of wheat caused by Septoria leaf blotch in seven cultivars and lines in Iran. J. Plant Prot. Res. 49 (3): 257–262.
Morton J.B., Bentivenga S.P., Wheeler W.W. 1993. Germ plasm in the International Collection of Arbuscular and Vesiculararbuscular Mycorrhizal Fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48 (2): 491–528.
Oehl F., Sieverding E., Palenzuela J., Ineichen K., Alves da Silva G. 2011. Advances in Glomeromycota taxonomy and classification. IMA Fungus 2 (2): 191–199.
Parvartha Reddy P. 2013. Recent Advances in Crop Protection. Springer, India, 278 pp.
Phillips J.M., Hayman D.S. 1970. Improved procedures for clearing roots and staining parasitic and VA mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55 (1): 158–161.
Pozo M.J., Verhage A., García-Andrade J., García J.M., Azcón Aguilar C. 2009. Priming plant defense against pathogens by arbuscular mycorrhizal fungi. p. 123–136. In: “Mycorrhizas – Functional Processes and Ecological Impact” (C. Azcón-Aguilar, J.M. Barea, S. Gianinazzi, V. Gianinazzi-Pearson, eds.). Springer Verlag, Berlin, 372 pp.
Schalamuk S., Cabello M. 2010. Arbuscular mycorrhizal fungal propagules from tillage and no-tillage systems: possible effects on Glomeromycota diversity. Mycologia 102 (2): 261–268.
Schalamuk S., Velázquez S., Chidichimo H., Cabello M. 2004. Effect of no-till and conventional tillage on mycorrhizal colonization in spring wheat. Bol. Soc. Argent. Bot. 39 (1–2): 13–20.
Schalamuk S., Velázquez S., Chidichimo H., Cabello M. 2006. Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effect of tillage. Mycologia 98 (1): 22–28.
Schmitz O., Danneberg G., Hundeshagen B., Klingner A., Bothe H. 1992. Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J. Plant Physiol. 139 (1): 106–114.
Schüβler A., Schwarzott D., Walker C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105 (12): 1413–1421.
Schüβler A., Walker C. 2010. The Glomeromycota: a species list with new families and new genera. Edinburgh and Kew. The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. http://www.amf-phylogeny.com [Accessed: October 21, 2013].
Schweiger P.F., Jakobsen I. 1998. Dose-response relationships between four pesticides and phosphorus uptake by hyphae of arbuscular mycorrhizas. Soil Biol. Biochem. 30 (10–11): 1415–1422.
Shaner G., Finney R.E. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67 (8): 1051–1056.
Sieverding E. 1991. Vesicular-Arbuscular Mycorrhiza Management in Tropical Agro-Ecosystem. Deutsche Gesellschaft für Technische Zusammenarbeit, Eschborn, 371 pp.
Simón M.R., Perelló A.E., Cordo C.A., Struik P.C. 2002. Influence of Septoria tritici on yield, yield components, and test weight of wheat under two nitrogen fertilization conditions. Crop Sci. 45 (6): 1974–1981.
Simón M.R., Cordo C.A., Perello A.E., Struik P.C. 2003. Influence of nitrogen supply on the susceptibility of wheat to Septoria tritici. J. Phytopathol. 151 (5): 283–289.
Smith S.E., Read D.J. 2008. Mycorrhizal Symbiosis. 3rd ed. Academic Press, London, 800 pp.
Verbruggen E., Kiers E.T. 2010. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol. Appl. 3 (5–6): 547–560.
Verbruggen E., Veresoglou S.D., Anderson I.C., Caruso T., Hammer E.C., Kohler J., Rillig M.C. 2013. Arbuscular mycorrhizal fungi-short-term liability but long-term benefits for soil carbon storage? New Phytol. 197 (2): 366–368.
Walker C., Mize W., McNabb H.S. 1982. Populations of endogonaceous fungi at two populations in central Iowa. Can. J. Bot. 60 (12): 2518–2529.
Whipps J.M. 2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens Can. J. Bot. 82 (8): 1198–1227.
Zadoks J.C., Chang T., Konzak C.F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14 (6): 415–421.
Zocco D., Fontaine J., Lozanova E., Renard L., Bivort C., Durand R., Grandmougin-Ferjani A., Declerck S. 2008. Influence of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycol. Res. 112 (5): 592–601.
Journals System - logo
Scroll to top