ORIGINAL ARTICLE
Evaluating sensitivity of Pyricularia oryzae in Mekong Delta (Vietnam) to fungicides and effect of Ag/SiO2 nanocomposites on chemical resistance isolates
,
 
,
 
Ngo Van Ngoi 1, B-C
 
 
 
More details
Hide details
1
Plant Protection, Nong Lam University Ho Chi Minh City, Ho CHi Minh, Viet Nam
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-09-17
 
 
Acceptance date: 2024-11-04
 
 
Online publication date: 2025-09-17
 
 
Corresponding author
Vo Thi Ngoc Ha   

Plant Protection, Nong Lam University Ho Chi Minh City, Ho CHi Minh, Viet Nam
 
 
 
HIGHLIGHTS
  • A total of 30 P. oryzae isolates were collected in regions of Mekong Delta, Vietnam
  • The resistant P. oryzae to azoxystrobin and chlorothalonil was highlighted
  • Ag/SiO2 exhibited a high inhibition effect for mycelial growth of resistant isolates
  • Ag/SiO2 activate the hyphae of P.oryzae break filament and damage cell wall integrity
KEYWORDS
TOPICS
ABSTRACT
Solving the fungicide resistance of the rice blast fungus Pyricularia oryzae (P. oryzae) is essential for rice production in the Mekong Delta region of Vietnam. Thus, this study aimed to investigate fungicide resistance and evaluate Ag/SiO2 nanocomposites for controlling the chemical resistance of P. oryzae. Here, a total of 30 P. oryzae isolates was collected, and most of the isolates exhibited conidia with pyriform and short pyriform. The sensitivity in vitro of all isolates was measured against those three chemicals via the poisoning method. Furthermore, the EC50 and the resistance factor (RF) were evaluated for 12 days after inoculation. The obtained results revealed that all of the P. oryzae isolates were sensitive to tricyclazole; to chlorothalonil, 67% of them were sensitive, while the rest 33% were medium-sensitive. To azoxystrobin, 17% of them were sensitive, 57% were medium- -sensitive, 23% were resistant, and the rest, 3%, were highly resistant. Subsequently, the antifungal activity of the Ag/SiO2 nanocomposites against two P. oryzae resistance isolates (labeled TM4 and TAT2) was determined. Interestingly, Ag/SiO2 nanocomposites exhibited a 100% inhibition effect for mycelial growth of TM4 and TAT2 isolates at a concentration of 60 μg ∙ ml–1 because Ag/SiO2 nanocomposites can activate the hyphae of P. oryzae to lose their typical structure (breaking filaments and damaging cell wall integrity). Overall, this study confirms the resistance of P. oryzae isolates to azoxystrobin and chlorothalonil and also highlights the potential of Ag/SiO2 as an alternative solution to control blast rice disease.
ACKNOWLEDGEMENTS
The research was conducted with the financial support of the Nong Lam University Ho Chi Minh City (NLU) under Grant No CS-CB23-NH-01.
RESPONSIBLE EDITOR
Iwona Adamska
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (52)
1.
Abdel-Ghany T.M., Ganash M., Bakri M.M., Al-Rajhi A.M.H. 2018. Molecular characterization of Trichoderma asperellum and lignocellulolytic activity on barley straw treated with silver nanoparticles. BioResources 13 (1): 1729–1744. DOI: https://doi.org/10.15376/biore....
 
2.
Akter M., Sikder M.T., Rahman M.M., Ullah A.K.M.A., Hossain K.F.B., Banik S., Hosokawa T., Saito T., Kurasaki M. 2018. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research 9: 1–16. DOI: https://doi.org/10.1016/j.jare....
 
3.
Al-Zubaidi S., Al-Ayafi A., Abdelkader H. 2019. Biosynthesis, characterization and antifungal activity of silver nanoparticles by Aspergillus niger isolate. Journal of Nanotechnology Research 02 (2019): 22–35. DOI: https://doi.org/10.26502/jnr.2....
 
4.
Baka Z.A., El-Zahed M.M. 2022. Antifungal activity of silver/silicon dioxide nanocomposite on the response of faba bean plants (Vicia faba L.) infected by Botrytis cinerea. Bioresources and Bioprocessing 9 (1): 102. DOI: https://doi.org/10.1186/s40643....
 
5.
Balba H. 2007. Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, Part B 42 (4): 441–451. DOI: https://doi.org/10.1080/036012....
 
6.
Balouiri M., Sadiki M., Ibnsouda S.K. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6 (2): 71–79 DOI: https://doi.org/10.1016/j.jpha....
 
7.
Bezerra G.A., Chaibub A.A., Oliveira M.I.S., Mizubuti E.S.G., Filippi M.C.C. 2021. Evidence of Pyricularia oryzae adaptability to tricyclazole. Journal of Environmental Science and Health, Part B 56 (10): 869–876. DOI: https://doi.org/10.1080/036012....
 
8.
Brent K.J. 1995. Fungicide resistance in crop pathogens: how can it be managed? FRAC Monograph no. 1. GIFAP, Brussels, 48 pp.
 
9.
Cai M., Miao J., Chen F., Li B., Liu X. 2021. Survival Cost and Diverse Molecular Mechanisms of Magnaporthe oryzae Isolate Resistance to Epoxiconazole. Plant Disease 105 (2): 473–480. DOI: https://doi.org/10.1094/PDIS-0....
 
10.
Chuan-qing Z., Ming-gu Z., Zhen-run S., Gui-mei L. 2004. Detection of sensitivity and resistance variation of magnaporthe grisea to kitazin p, carbendazim and tricyclazole. Rice Science 11 (5): 317–326.
 
11.
D’Ávila L.S., De Filippi M.C.C., Café-Filho A.C. 2021. Sensitivity of Pyricularia oryzae populations to fungicides over a 26-year time frame in Brazil. Plant Disease 105 (6): 1771–1780. DOI: https://doi.org/10.1094/PDIS-0....
 
12.
D’Ávila L.S., De Filippi M.C.C., Café-Filho A.C. 2022. Fungicide resistance in Pyricularia oryzae populations from southern and northern Brazil and evidence of fitness costs for QoI-resistant isolates. Crop Protection 153: 105887. DOI: https://doi.org/10.1016/j.crop....
 
13.
Dorigan A.F., CarvalhoG.D., Poloni N.M., Negrisoli M.M., Maciel J.L.N., Ceresini P.C. 2019. Resistance to triazole fungicides in Pyricularia species associated with invasive plants from wheat fields in Brazil. Acta Scientiarum. Agronomy 41 (1): 39332. DOI: https://doi.org/10.4025/actasc....
 
14.
Fan X., Yahia L., Sacher E. 2021. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology 10 (2): 137. DOI: https://doi.org/10.3390/biolog....
 
15.
Fang M., Yan L., Wang Z., Zhang D., Ma Z. 2009. Sensitivity of Magnaporthe grisea to the sterol demethylation inhibitor fungicide propiconazole. Journal of Phytopathology 157 (9): 568–572. DOI: https://doi.org/10.1111/j.1439....
 
16.
FAOSTAT. 2024. Food and agriculture data. 2024. [Available on: https://www.fao.org/faostat/en...] [Accessed on: 24 August 2024].
 
17.
Froyd J.D. 1978. Methods of applying tricyclazole for control of Pyricularia oryzae on rice. Phytopathology 68 (5): 818. DOI: https://doi.org/10.1094/Phyto-....
 
18.
Gouot J.M. 1988. Characteristics and population dynamics of Botrytis cinerea and other pathogens resistant to dicarboximides. p. 53–55 In: “Fungicide Resistance in North America” (C.J. Delp, ed.) American Phytopathological Society, St. Paul, MN, USA.
 
19.
Guo B., Lou Y., Liang Y., Zhang J., Hua H., Xi Y. 2004. Effects of nitrogen and silicon applications on the growth and yield of rice and soil fertility. Chinese Journal of Ecology (6): 33–36.
 
20.
Guo Z., Zeng G., Cui K., Chen A. 2019. Toxicity of environmental nanosilver: mechanism and assessment. Environmental Chemistry Letters 17 (1): 319–333. DOI: https://doi.org/10.1007/s10311....
 
21.
Habash M.B., Park A.J., Vis E.C., Harris R.J., Khursigara C.M. 2014. Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa pao1 biofilms. Antimicrobial Agents and Chemotherapy 58 (10): 5818–5830. DOI: https://doi.org/10.1128/AAC.03....
 
22.
Hirooka T., Ishii H. 2013. Chemical control of plant diseases. Journal of General Plant Pathology 79 (6): 390–401. DOI: https://doi.org/10.1007/s10327....
 
23.
Kafle K., Poudel A., Manandhar S., Adhikari N. 2021. Efficacy of different fungicides against the in-vitro growth of Pyricularia oryzae causing Rice blast disease. International Journal of Environment, Agriculture and Biotechnology 6 (3):153–157. DOI https://doi.org/10.22161/ijeab....
 
24.
Karunakaran G., Suriyaprabha R., Manivasakan P., Yuvakkumar R., Rajendran V., Prabu P., Kannan N. 2013. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnology 7 (3): 70–77. DOI: https://doi.org/10.1049/iet-nb....
 
25.
Khan F., Pandey P., Upadhyay T.K. 2022. Applications of nanotechnology-based agrochemicals in food security and sustainable agriculture: an overview. Agriculture 12 (10): 1672. DOI: https://doi.org/10.3390/agricu....
 
26.
Kilian M., Steiner U. 2003. DISEASE | Bactericides and Fungicides. p. 190–198. In: “Encyclopedia of Rose Science” (Roberts, A.V., ed.). Elsevier, Oxford. DOI: https://doi.org/10.1016/B0-12-....
 
27.
Kim K.J., Sung W.S., Suh B.K., Moon S.K., Choi J.S., Kim J.G., Lee D.G. 2008. Antifungal activity and mode of action of silver nano-particles on Candida albicans. BioMetals 22 (2): 235–242. DOI: https://doi.org/10.1007/s10534....
 
28.
Kimura N., Fujimoto H. 2015. Fitness studies between field isolates of Magnaporthe oryzae resistant and sensitive to scytalone dehydratase inhibitors of melanin biosynthesis (MBI-Ds) and decline of frequency of resistant isolates at a rice field. Journal of Plant Diseases and Protection 122 (5/6): 224–228. DOI: https://doi.org/10.1007/BF0335....
 
29.
Kunova A., Cortesi P. 2013. Tricyclazole and azoxystrobin in rice blast management : a review of thier activity ad pathogen responses. p. 39–66. In: “Fungicides: Classification, Role in Disease Management and Toxicity Effects” (Wheeler M.N., Johnston B.R., eds.). Nova Science Publishers, Inc.; New York, USA, 121 pp.
 
30.
Kunova A., Pizzatti C., Bonaldi M., Cortesi P. 2014. Sensitivity of nonexposed and exposed populations of Magnaporthe oryzae from rice to tricyclazole and azoxystrobin. Plant Disease 98 (4): 512–518. DOI: https://doi.org/10.1094/PDIS-0....
 
31.
Liang Y., Nikolic M., Belanger R., Gong H., Song A. 2015. Effect of Silicon on Crop Growth, Yield and Quality. p. 209–223. In: “Silicon in Agriculture”. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94....
 
32.
Longya A., Talumphai S., Jantasuriyarat C. 2020. Morphological characterization and genetic diversity of rice blast fungus, Pyricularia oryzae, from thailand using issr and srap markers. Journal of Fungi 6 (1): 38. DOI: https://doi.org/10.3390/jof601....
 
33.
LPAU&LPBU in Vietnam. 2023. Revising List of Pesticides Approved for Use and the List of Pesticides Banned from Use in Vietnam. 2023] [Available on: https://datafiles.chinhphu.vn/.... [Accessed on: 23 August 2024].
 
34.
Mew T.-W., Gonzales P. 2002. A Handbook of Rice Seedborne Fungi. Los Bafios (Philippines): International Rice Research Institute, and Enfield, N.H. (USA): Science Publishers, Inc., 83 pp.
 
35.
Mikaberidze A., McDonald B. 2015. Fitness Cost of Resistance: Impact on Management. p. 77–89. In: “Fungicide Resistance in Plant Pathogens. Principles and a Guide to Practical Management” (Ishii H., Hollomon D.W., eds.). Springer Japan, 490 pp. DOI: https://doi.org/10.1007/978-4-....
 
36.
Nalley L., Tsiboe F., Durand-Morat A., Shew A., Thoma G. 2016. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States. PLOS ONE 11 (12): e0167295. DOI: https://doi.org/10.1371/journa....
 
37.
Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17 (5): 372–386. DOI: https://doi.org/10.1007/s10646....
 
38.
Nguyen H.C., Nguyen T.T., Dao T.H., Ngo Q.B., Pham H.L., Nguyen T.B.N. 2016. Preparation of Ag/SiO 2 nanocomposite and assessment of its antifungal effect on soybean plant (a Vietnamese species DT-26). Advances in Natural Sciences: Nanoscience and Nanotechnology.7 (4): 045014. DOI: https://doi.org/10.1088/2043-6....
 
39.
Okey-Onyesolu C.F., Hassanisaadi M., Bilal M., Barani M., Rahdar A., Iqbal J., Kyzas G.Z. 2021. Nanomaterials as nanofertilizers and nanopesticides: an overview. ChemistrySelect 6 (33): 8645–8663. DOI: https://doi.org/10.1002/slct.2....
 
40.
Park S.Y., Han K., O’Neill D.B., Mul G. 2017. Stability of Ag@SiO 2 core-shell particles in conditions of photocatalytic overall water-splitting. Journal of Energy Chemistry 26 (2): 309–314. DOI: https://doi.org/10.1016/j.jech....
 
41.
Pham D.C., Nguyen T.H., Ngoc U.T.P., Le N.T.T., Tran T.V., Nguyen D.H. 2018. Preparation, characterization and antifungal properties of chitosan-silver nanoparticles synergize fungicide against Pyricularia oryzae. Journal of Nanoscience and Nanotechnology 18 (8): 5299–5305. DOI: https://doi.org/10.1166/jnn.20....
 
42.
Pham N.B.T., Le V.K.T., Bui T.T.T., Phan N.G.L., Tran Q.V., Nguyen M.L., Dang V.Q., Nguyen T.T., Vo T.N.H., Tran C.K. 2021. Improved synthesis of Ag/SiO2 colloidal nanocomposites and their antibacterial activity against ralstonia solanacearum 15. Journal of Nanoscience and Nanotechnology 21 (3): 1598–1605. DOI: https://doi.org/10.1166/jnn.20....
 
43.
Prema P., Thangapandiyan S., Immanuel G. 2017. CMC stabilized nano silver synthesis, characterization and its antibacterial and synergistic effect with broad spectrum antibiotics. Carbohydrate Polymers 158: 141–148. DOI: https://doi.org/10.1016/j.carb....
 
44.
Rangelova N., Aleksandrov L., Angelova T., Georgieva N., Müller R. 2014. Preparation and characterization of SiO2/CMC/Ag hybrids with antibacterial properties. Carbohydrate Polymers 101: 1166–1175. DOI: https://doi.org/10.1016/j.carb....
 
45.
Salem S.S., Hashem A.H., Sallam A.-A.M., Doghish A.S., Al-Askar A.A., Arishi A.A., Shehabeldine A.M. 2022. Synthesis of silver nanocomposite based on carboxymethyl cellulose: antibacterial, antifungal and anticancer activities. Polymers 14 (16): 3352. DOI: https://doi.org/10.3390/polym1....
 
46.
Shi H., Wen H., Xie S., Li Y., Chen Y., Liu Z., Jiang N., Qiu J., Zhu X., Lin F. and Kou Y. 2023. Antifungal activity and mechanisms of AgNPs and their combination with azoxystrobin against Magnaporthe oryzae. Environmental Science: Nano 10 (9): 2412–2426. DOI: https://doi.org/10.1039/D3EN00....
 
47.
Song J.J., Soytong K., Kanokmedhakul S. 2022. Control of rice blast disease caused by Magnaporthe oryzae by application of antifungal nanomaterials from Emericella nidulans. Plant Protection Science 58 (1): 40–48. DOI: http://doi.org/10.17221/33/202....
 
48.
Sultana R., Zohura F., Rahman M., Hasan A., Meah M., Hossain M. 2020. Evaluation of some fungicides in controlling blast of rice var. Kalijira in Mymensingh. Journal of Bangladesh Agricultural University (0): 1. DOI: https://doi.org/10.5455/JBAU.1....
 
49.
Tran N.T., Dat H, Pham L. H. , Vo T.V, Nguyen N.N., Tran C.K., Nguyen D.M., Nguyen T.T.T., Tran T.T.V., Nguyen P.L.M., Hoang D.Q. 2023. Ag/SiO2 nanoparticles stabilization with lignin derived from rice husk for antifungal and antibacterial activities. International Journal of Biological Macromolecules 230: 123124. DOI: https://doi.org/10.1016/j.ijbi....
 
50.
Wang Y., Deng C., Rawat S., Cota-Ruiz K., Medina-Velo I., Gardea-Torresdey J.L. 2021. Evaluation of the effects of nanomaterials on rice (Oryza sativa l.) responses: underlining the benefits of nanotechnology for agricultural applications. ACS Agricultural Science & Technology 1 (2): 44–54. DOI: https://doi.org/10.1021/acsags....
 
51.
Woloshuk C.P., Sisler H.D., Tokousbalides M.C., Dutky S.R. 1980. Melanin biosynthesis in Pyricularia oryzae: Site of tricyclazole inhibition and pathogenicity of melanin-deficient mutants. Pesticide Biochemistry and Physiology 14 (3): 256–264. DOI: https://doi.org/10.1016/0048-3....
 
52.
Wiraswati S. M., Iman R., Abdjad A.N., Wahyudi A.T. 2019. Antifungal activities of bacteria producing bioactive compounds isolated from rice phyllosphere against Pyricularia oryzae. Journal of Plant Protection Research 59 (1): 86–94. DOI: https://doi.org/10.24425/jppr.....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top