Immunoliogical responses of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) to entomopathogenic fungi, Beauveria bassiana (Bals.-Criy) and Isaria farinosae (Holmsk.) Fr.
More details
Hide details
Department of Plant Protection, College of Agriculture, University of Guilan, 41635-1314, Rasht, Iran
Department of Biological Control, Iranian Research Institute of Plant Protection, 19395-1454, Tehran, Iran
Department of Plant Protection, Research Institute of Forest and Rangeland, 13185-116, Tehran, Iran
Submission date: 2012-08-01
Acceptance date: 2013-03-12
Corresponding author
Jalal Jalali Sendi
Department of Plant Protection, College of Agriculture, University of Guilan, 41635-1314, Rasht, Iran
Journal of Plant Protection Research 2013;53(2):110-118
Five morphological types of hemocytes were recognized in hemolymph of the 4th instar larvae of Hyphantria cunea (Drury). These hemocytes were: prohemocytes, plasmotocytes, granulocytes, oenocytoids, and spherulocytes. Tests were done on the effects of four isolates of the entomopathogenic fungus Beauveria bassiana (Bals.-Criy) (Fashand, spt-22, Ir-K-40 and 566), one isolate of Isaria farinosae (Holmsk.) Fr. (1872c), and latex-beads on the cellular immune defense mechanism and Phenoloxidase (PO) activity of H. cunea. Observation showed that plasmatocytes and granulocytes engulfed fungal pathogens by phagocytosis. The most phagocytosis occurred 30 and 60 min after injection but nodulation occurred in 3 and 6 hours, in all treatments. The total hemocyte count (THC) and granulocyte, and plasmotocyte numbers increased after the injection of spores. Phenoloxidase activity was determined in the presence of L-DOPA (L-3,4-dihydroxyphenylalanine), as a substrate in intervals, after injection of fungal spores, and latex beads. These studies demonstrated that B. bassiana is a promising candidate for biological control of H. cunea. .
The authors have declared that no conflict of interests exist.
Abood F., Bajwa G.A., Ibrahim Y.B., Sajap A.S. 2010. Pathogenicity of Beauveria bassiana against the Tiger Moth, Atteva scoidoxa (Lepidoptera: Yponomeutidae). J. Entomol. 7 (1): 19–32.
Anggraeni T., Melanie, Putra R.E. 2011. Cellular and humoral immune defenses of Oxya japonica (Orthoptera: Acrididae) to entomopathogenic fungi Metarhizium anisopliae. Entomol Res. 41 (1): 1–6.
Ashida M., Brey P.T. 1998. Recent advances in research on the insect prophenoloxidase cascade. p. 135–172. In: “Molecular Mechanism of Immune Responses in Insects” (P.T. Brey, D. Hultmark, eds.). Chapman and Hall, London, 340 pp.
Bidochka M.J., Khachatourians G.G. 1987. Hemocytic defense response to the entomopathogenic fungus Beauveria bassiana in the migratory grasshopper Melanoplus saguenipens. Entomol. Exp. Appl. 45 (2): 151–156.
Bidochka M.J., Hajek A.E. 1998. A nonpermissive entomophthoralean fungal infection increases activation of insect prophenoloxidase. J. Invertebr. Patholol. 72 (3): 231–238.
Beetz S., Holthusen T.K., Koolman J., Trenczek T. 2008. Correlation of hemocyte counts with different developmental parameters during the last larval instar of the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 67 (2): 63–75.
Borges A.R., Santos P.N., Furtado A.F., Figueiredo R.C. 2008. Phagocytosis of latex beads and bacteria by hemocytes of the triatomine bug Rhodnius prolixus (Hemiptera: Reduvidae). Micron. 39 (40): 486–494.
Butt T.M., Jackson C.W., Magan N. 2001. Introduction-fungal biological control agents: progress, problems and potential. p. 1–8. In: “Fungi as Biocontrol Agents: Progress, Problems and Potential” (T.M. Butt, C.W. Jackson, N. Magan, eds.). CABI Publishing, Wallingford, 390 pp.
Costa S.C., Ribeiro C., Girard P.A., Zumbihl R., Brehelin M. 2005. Modes of phagocytosis of gram-positive and gram-negative bacteria by Spodoptera littoralis granular hemocytes. J. Insect Physiol. 51 (1): 39–46.
Da Silva J.B., De Albuquerque C.M., De Araujo E.C., Peixota C.A., Hurd H. 2000. Immune defense mechanisms of Culex quinquifasciatus (Diptera: Culicidae) against Candida albicans infection. J. Invertebr. Pathol. 76 (4): 257–262.
Franssens V., Smagghe G., Simonet G., Claeys I., Breugelmans B., Deloof A., van den Broeck J. 2006. 20-Hydroxy ecdysone and juvenile hormone regulate the laminarin-induced nodulation reaction in larvae of the fleshfly, Neobellieria bullata. Dev. Comp. Immunol. 30 (9): 735–740.
Giglio A., Battistella S., Talarico F.F., Brandmayr T.Z., Giulianini P.G. 2008. Circulating hemocytes from larvae and adults of Carabus (Chaetocarabus) lefebvrei Dejean 1826 (Coleoptera, Carabidae): cell types and their role in phagocytosis after in vivo artificial non-self-challenge. Micron39 (50): 552–558.
Gillespie J.P., Khachatourians G.G. 1992. Characterization of the Melanoplus sanguinipes hemolymph after infection with Beauveria bassiana. Comp. Biochem. Physiol. Part B 103 (2): 455–463.
Gillespie J.P, Burnett C., Charnley A.K. 2000. The immune reactions of the desert locust Schistocerca gregaria in response to the topical application of conidia of the entomopathogenic fungus, Metarhizium flavoviride. J. Insect Physiol. 46 (4): 429–437.
Giulianini P.G., Bertolo F., Battistella S., Amirante G.A. 2003. Ultrastructure of the hemocytes of Cetonischemaaeruginosa larvae (Coleoptera: Scarabaeidae): interaction of Dicladispa armigera haemocytes involvement of both granulocytes and oenocytoids in vivo phagocytosis. Tissue Cell 35 (4): 243–251.
Gunnarsson S.G.S. 1988. Infection of Schistocerca gregaria by the fungus, Metarhizium anisopliae: cellular reactions in the integument studied by scanning electron and light microscopy. J. Invertebr. Pathol. 52 (1): 9–17.
Gupta A. P 1979. Hemocytes types: their structure, synonymies, interrelationship, and taxonomic significance. p. 85–127. In: “Insect Hemocytes” (A.P. Gupta, ed.). Cambridge University Press, Cambridge, 614 pp.
Gupta A.P. 1985. Cellular elements in the haemolymph. p. 85–127. In: “Comperhensive Insect Physiology” (G.A. Kerkut, L.I. Gilbert, eds.). Biochemistry and Pharmacology̓ Cambridge University Press, Cambridge, 625 pp.
Hazarika L.K., Gupta A.P. 1987. Variation in hemocyte populations during various developmental stages of Blattela germanica (L.) (Dictyoptera, Blattellidae) Zool. Sci. 4 (5): 307–313.
Hernandez S., Lanz H., Rodriguez M.H., Torres J.A., Martinez P.A., Tsutsumi V. 1999. Morphological and cytochemical characterization of female Anopheles albimanus (Diptera: Culicidae) hemocytes. J. Medical Entomol. 36 (3): 426–434.
Hoch G., Solter L.F., Schopf A. 2004. Hemolymph melanization and alteration in hemocyte numbers in Lymantria dispar larvae following infections with different entomopathogenic microsporidia Entomol. Exp. Appl. 113 (2): 77–86.
Hung S.M., Boucuas D.G. 1992. Influence of Beauveria bassiana on cellular defense response of the beet army worm, Spodoptera exigua. J. Invertebr. Pathol. 60 (2): 152–158.
Iwama R., Ashida M. 1986. Biosynthesis of prophenoloxidase in hemocytes of larval hemolymph of the silkworm, Bombyx mori. Insect Biochem. 16 (3): 547–555.
Jiang H., Wang Y., Ma C., Kanost M.R. 1997. Subunit composition of pro-phenol oxidase from Manduca sexta: Molecular cloning of subunit ProPO-P1. Insect Biochem. Mol. Biol. 27 (10): 835–850.
Jiravanichpaisal P., Lee B.L., Soderhall K. 2006. Cell-mediated immunity in arthropods: Hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211 (4): 213–236.
Kurtz J., Sauer K.P. 2001. Gender differences in phenoloxidase activity of Panorpa vulgaris hemocytes. J. Invertebr. Pathol. 78 (1): 53–55.
Lavine M.D., Strand M. R. 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32 (10): 1295–1309.
Leonard C., Soderhall K.N., Ratcliffe A. 1985. Studies on prophenoloxidase and protease activity of Balbifer cranifer haemocytes. Insect Biochem. 15 (6): 803–810.
Ling E., Shirai K., Kanekatsu R., Kiguchi K. 2005. Hemocyte differentiation in the hematopoietic organs of the silkworm, Bombyx mori: prohemocytes have the function of phagocytosis. Cell and Tissue Res. 320 (3): 535–543.
Manachini B., Arizza V., Parrinello D., Parrinello N. 2011. Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. J. Invertebr. Pathol. 106 (3): 360–365.
Mason H.S. 1965. Oxidases. Annu. Rev. Biochem. 34 (1): 595–634.
Mochiah M.B., Ngi-Song A.J., Overholt W.A., Botchey M. 2003. Variation in total and differential hemocyte count of Busseola fusca (Lepidoptera: Noctuidae) parasitized by two biotypes of Cotesia sesamiae (Hymenoptera: Braconidae) and larval growth responses. Environ. Entomol. 32 (2): 247–255.
Montermini A., Oliva G. 1984. Let us learn to know the fall webworm. Informatore Fitopatologico 34 (1): 35–40.
Moushumi P.H., Hazarika L.K., Barooah M., Puzari K.C., Kalita S. 2008. Interaction of Dicladispa armigera (Coleoptera: Chrysomelidae) haemocytes with Beauveria bassiana. J. Trop. Insect Sci. 28 (2): 88–97.
Nahla M., El-Aziz A.B.D., Awad H.H. 2010. Changes in the haemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. Micron 41 (3): 203–209.
Nappi A.J. 1981. Cellular immune response of Drosophila melanogaster against Asobara tabida. Parasitology 83 (2): 319–324.
Ratcliffe N.A., Gagen S.J. 1976. Cellular defense reactions of insect hemocytes in vivo: nodule formation and development in Galleria mellonella and Pieris brassicae larvae. J. Invertebr. Pathol. 28 (3): 373–382.
Rezaei V., Moharamipour S., Fathipour Y., Talebi A.A. 2006. Some biological characteristics of American white webworm, Hyphantria cunea Drury, (Lep.: Arctiidae) in the Guilan province. J. Entomol. Soc. Iran 26 (1): 33–43.
Rosales C. 2011. Phagocytosis, a cellular immune response in insects. Invertebr. Survival J. 8 (1): 109–131.
Samson R.A. 1974. Paecilomyces and Some Allied Hyphomycetes. Studies in Mycology 6. Centraalbureau voor Schimmelcultures, Baarn, 116 pp.
Sanjayan K.P., Ravikumar T., Albert S. 1996. Changes in the haemocyte profile of Spilostethus hospes (Fab.) (Heteroptera: Lygaeidae) in relation to eclosion, sex and mating. J. Biosci. 21 (6): 781–788.
Soderhall K., Cerenius L. 1992. Crustacean immunity. Annu. Rev. Fish Dis. 2: 3–23.
Tikku K., Saxena B.P., Satti N.K., Suri K.A. 1992. Plumbagininduced ultrastructural haemocytic response of Dysdercus koenigii F. Insect Sci. Appl. 13 (6): 787–791.
Yamashita M., Iwabuchi K. 2001. Bombix mori prohemocytes division and differentiation in individual microcultures. J. Insect Physiol. 47 (4–5): 325–331.
Yarmand H. Sadeghi S.E., Mohammadi M., Mehrabi A., Zamani S.M., Ajamhasani M., Angeli S. 2009. The fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae): a new emerging pest insect for forests and agricultural crops of Iran. p. 120–134. In: “Review of Forests, Wood Products and Wood Biotechnology of Iran and Germany” (A.R. Kharazipour, C. Schopper, C. Muller, M. Euring, eds.). Gottingen University, Germany, 318 pp.
Yokoo S., Goetz P., Tojo S. 1995. Phagocytic activities of hemocytes separated by two simple methods from larvae of two lepidopteran species, Agrotis segetum and Galleria mellonella. Appl. Entomol. Zool. 30 (2): 343–350.
Wittenberg R. 2005. An Inventory of Alien Species and their Threat to Biodiversity and Economy in Switzerland. CABI Bioscience Switzerland Center report to the Swiss agency for environment, forest and landscape, 416 pp.
Zibaee A., Bandani A., Talaei R., Malagoli D. 2011. Cellular immune reactions of the sunn pest, Eurygaster integriceps, to the entomopathogenic fungus, Beauveria bassiana and its secondary metabolites. J. Insect Sci. 11 (138): 1–16.
Journals System - logo
Scroll to top