Influence of Fusarium oxysporum f. sp. Cubense (E.F. Smith) Snyder and Hansen on 2,4-diacetylphloroglucinol production by Pseudomonas fluorescens Migula in banana rhizosphere
 
More details
Hide details
1
Tamil Nadu Agricultural University, Agricultural Research Station Kovilpatti – 628 501, Tamil Nadu, India
 
2
Agricultural College and Research Institute, Killikulam – 628 252, India
 
 
Corresponding author
Thangavelu Saravanan
Tamil Nadu Agricultural University, Agricultural Research Station Kovilpatti – 628 501, Tamil Nadu, India
 
 
Journal of Plant Protection Research 2006;46(3):241-253
 
KEYWORDS
TOPICS
ABSTRACT
Influence of Fusarium oxysporum f. sp. cubense (E.F. Smith) Snyder and Hansen on 2,4-diacetylphloroglucinol (DAPG) production in the rhizosphere of banana cultivar Rasthali by Pseudomonas fluorescens was investigated. The purified extracts of Pfm strain of P. fluorescens isolated from banana rhizosphere inhibited the growth and spore germination of F. oxysporum f. sp. cubense under laboratory conditions. DAPG extracted from the cultures of the strain was observed as distinct spots in thin layer chromatographic plates at Rf value of 0.88. The extracts of soil inoculated with P. fluorescens and challenge inoculated with F. oxysporum f. sp. cubense eluted at retention time ranges from 20.00 min to 21.30 min. The quantity of DPAG production was less in the extracts of soil inoculated with P. fluorescens and challenge inoculated with F. oxysporum f. sp. cubense as compared to P. fluorescens alone inoculated soil. The talc formulation of Pfm strain also reduced vascular discolouration due to the pathogen in banana plants when inoculated at 15 g/plant.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (48)
1.
Blazevic D.J, Koepcke M.H., Matsen J.M. 1973. Incidence and identification of Pseudomonas fluorescens and Pseudomonas putida in the clinical laboratory. J. Appl. Microbiol. 25: 107–110.
 
2.
Bonsall R.F., Weller D.M., Thomashow L.S. 1997. Quantification of 2,4-diacetyl phloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol. 63: 951–955.
 
3.
Broadbent D., Mabelis R.P., Spencer H. 1976. C-acetylphloroglucinols from Pseudomonas fluorescens. Phytochemistry 15, p. 1785.
 
4.
Brodsky M.H., Nixon M.C. 1973. Rapid method for detection of Pseudomonas aeroginosa on McConkey-agar under ultra violet. J. Appl. Microbiol. 26: 219–220.
 
5.
Chang P.C., Blackwood A.C. 1969. Simultaneous production of three phenazine - 1- carboxylic acid pigments by Pseudomonas aureofaciens. Mac 436. Can. J. Microbiol. 15: 439–444.
 
6.
Deese C.D., Stahman A.M. 1962. Pectic enzymes and cellulase formation by Fusarium oxysporum f. sp. cubense of stem tissues from resistant and susceptible banana plants. Phytopathology 52: 247–255.
 
7.
Defago G. 1993. 2,4-diacetylphloroglucinol, a promising compound in biocontrol. Plant Pathol. 42: 311–312.
 
8.
Dowling N.D., O’Gara F. 1994. Metabolites of pseudomonas involved in the biocontrol of plant diseases. Tibtech 12: 133–141.
 
9.
Duffy B.K., Defago G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic synthesis. Phytopathology 87: 1250–1257.
 
10.
Garagulya A.D., Kiprianova E.A., Boiko O.I. 1974. Antibiotic effect of bacteria from the genus Pseudomonas on phytopathogenic fungi. Microbiology (Kiev) 36: 197–202.
 
11.
Gould W., Hagedorn C., Bardinelli T., Zoblotowicz R. 1985. New selective media for enumeration and recovery of fluorscent pseuodomonads from various habitats. Appl. Environ. Microbiol. 49: 28–32.
 
12.
Howell C.R., Stipanovic R.D. 1980. Suppression of Pythium ultimum induced damping off seedlings by Pseudomona fluorescens and its antibiotic, pyoluteorin. Phytopathology 70: 712–715.
 
13.
Keel C., Wirthner P., Obeshansli T., Voisard C., Burger U., Hass D., Defago G. 1990. Pseudomonas as antagonists of plant pathogens in the rhizosphere, role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9: 327–341.
 
14.
Keel C., Schnider U., Maurhofer M., Voisard C., Laville K., Burger U., Wirthner U. P., Haas D., Defago G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Inter. 5: 4–13.
 
15.
King E.O., Ward M.K., Raney D.E. 1954. Two simple media for demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 14: 301–307.
 
16.
Kreig N.R., Holt J.G. 1984. Bergy’s Manual of Systematic Bacteriology, 9th Edition, Vol. I. The Williams and Wilkins Co., Baltimore, 324 pp.
 
17.
Marasas W.F.O., Nelson P.E., Tousson T.A. 1984. Toxigenic Fusarium Fusarium species: Identity and Mycotoxicology. The Pennsylvania State University Press, University Park, Pa, 114 pp.
 
18.
Maurhofer M., Keel C., Schnider U., Voisard C., Hass D., Defago G. 1992. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82: 190–195.
 
19.
Maurhofer M., Hase C., Meuwly P., Metraux J.P., Defago G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonization Pseudomonas fluorescens strain CHA0: influence of the gac A gene and of pyoverdine production. Phytopathology 84: 139–146.
 
20.
Notz R., Maurhofer M., Dubach H., Haas D., Défago G. 2002. Fusaric Acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expressions in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of Wheat. Appl. Environ. Microbiol. 68: 2229–2235.
 
21.
Orjeda G. 1998. Evaluation of Musa germplasm for resistance to sigatoka diseases and Fusarium wilt. INIBAP Technical Guidelines 3. International Plant Genetic Resources Institute, Rome, Italy, p. 29.
 
22.
Picard C.F., Di Cello F., Ventura M., Fani R., Guckert A. 2000. Frequency and biodiversity of 2,4-diacetylpholoroglucinol producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948–955.
 
23.
Ploetz R.C., Herbert J., Sebasigari K., Hernandez J.H., Pegg K.G., Ventura J.A., Mayato L.S. 1990. Importance of Fusarium wilt in different banana-growing regions. p. 9. In “Fusarium Wilt of Banana” (R.C. Ploetz, ed.). The APS Press, St. Paul.
 
24.
Pyysalo H., Widen C.J. 1979. Glass capillary gas chromatographic separation of naturally occurring phloroglucinols. J. Chromatography 168, p. 246.
 
25.
Raaijmakers J., Wellers D., Thomashow L. 1997. Frequency of antibiotic producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881–887.
 
26.
Raaijmakers J.M., Bonsall R.F., Weller D.M. 1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89: 470–475.
 
27.
Raaijmakers J.M., Weller D.M. 2001. Exploiting Genotypic diversity of 2,4-diacetylphloroglucinol producing Pseudomonas spp.: Characterization of superior root colonizing P. fluorescens strain Q8r-96. Appl. Environ. Microbiol. 67: 2545–2554.
 
28.
Raguchander T., Jayashree K., Samiyappan R. 1997. Management of Fusarium wilt of banana using antagonistic micro-organisms. J. Biol. Control 11: 101–105.
 
29.
Reddi T.K., Khudyakov P.Y.A., Borovkov A.V. 1969. Pseudomonas fluorescens strain 26 –0 a producer of phyotoxic substances. Mikrobiologia 38: 909–913.
 
30.
Ricker A.J., Ricker R.S. 1936. Introduction to Research on Plant Disease. Johns. Swift Co. Mc., New York, 117 pp.
 
31.
Rioux C., Jordan D.C., Rattray J.B.M. 1983 Colorimetric determination of catechol siderophores in microbial cultures. Ann. Biochem. 133: 163–169.
 
32.
Rosales A.M., Thomashow L., Cook R.J., Mew T.W. 1995. Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp. Phytopathology 85: 1028–1032.
 
33.
Schippers B., Bakker W., Bakker P.A.H.M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 25: 339–358.
 
34.
Schnider-Keel U., Seematter A., Maurhofer M., Blumer C., Duffy B., Gigot-Bonnefoy C., Reimmann C., Notz R., Défago G., Haas D., Keel C. 2000. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial.metabolites salicylate and pyoluteorin. J. Bacteriol. 182: 1215–1225.
 
35.
Schroth M.N., Hancock J.G. 1982. Disease-suppressive soil and root colonizing bacteria. Science 216: 1376–1381.
 
36.
Sebasigari K., Stover R.H. 1988. Banana diseases and pests in East Africa. Report of a survey in November 1987. INIBAP, Montpellier, France: 15–17.
 
37.
Shanahan P., Sullivan D.O., Simpson P., Glennon J., O’ Gara F. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonads and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353–358.
 
38.
Sivamani E., Gnanamanickam S.S. 1988. Biological control of Fusarium oxysporum f. sp. cubense in banana by inoculation with Pseudomonas fluorescens. Plant Soil 107: 3–9.
 
39.
Snyder W.C., Hansen H. 1940. The species concept in Fusarium. Am. J. Botany 27: 64–67.
 
40.
Sukhada M., Mohan M., Rawal R.D., Chakraborty S., Sreekantappa H., Manjula R., Lakshmikantha H.C. 2004. Interaction of Fusarium oxysporum f. sp. cubense pre colonized to banana roots. World J. Microbiol. Biotechnol. (NLD) 20: 651–655.
 
41.
Sullivan D., O’Gara F. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant pathogens. Microbiol. Rev. 56: 662–676.
 
42.
Thangavelu R., Palaniswami A., Ramakrishman G., Doraiswamy S., Muthukrishnan S., Velazhahan R. 2001. Involvement of fusaric acid detoxification of Pseudomonas fluorescens strain Pf10 in the biological control of Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense. J.Plant Dis. Protection 108: 433–445.
 
43.
Thomashow L., Weller D.M. 1988. Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaummannomyces graminis var. tritici. J. Bacteriol 170: 3499–3508.
 
44.
Thomashow L.S., Weller D.M. 1996. Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites. p. 187–235. In “Plant-Microbe Interactions” (G. Stacey, M. Keen, eds.). Chapman and Hall, New York, Vol. I.
 
45.
Vidhyasekaran P., Muthamilan M. 1995. Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis. 79: 782–786.
 
46.
Weller D.M., Thomashow L.S. 1993. Use of rhizbacteria for biocontrol. Curr. Opin. Biotechnol. 4: 306–311.
 
47.
Widen C., Pyysalo H., Salovaara P. 1980. Separation of naturally occurring acetylphloroglucinols by high performance liquid chromatography. J. Chromatography 188: 213–220.
 
48.
Tomas-Lorente F., Iniesta-San Martin E., Tomas Barberan F.A., Trowitzsch-Kienast W., Wary V. 1989.Antifungal phloroglucinol derivatives and lipophilic flavanoids from Helichrysum decumbens. Phytochemistry 28: 1613–1615.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top