Influence of Fusarium oxysporum f. sp. Cubense (E.F. Smith) Snyder and Hansen on 2,4-diacetylphloroglucinol production by Pseudomonas fluorescens Migula in banana rhizosphere
Influence of Fusarium oxysporum f. sp. cubense (E.F. Smith) Snyder and Hansen on 2,4-diacetylphloroglucinol (DAPG) production in the rhizosphere of banana cultivar Rasthali by Pseudomonas fluorescens was investigated. The purified extracts of Pfm strain of P. fluorescens isolated from banana rhizosphere inhibited the growth and spore germination of F. oxysporum f. sp. cubense under laboratory conditions. DAPG extracted from the cultures of the strain was observed as distinct spots in thin layer chromatographic plates at Rf value of 0.88. The extracts of soil inoculated with P. fluorescens and challenge inoculated with F. oxysporum f. sp. cubense eluted at retention time ranges from 20.00 min to 21.30 min. The quantity of DPAG production was less in the extracts of soil inoculated with P. fluorescens and challenge inoculated with F. oxysporum f. sp. cubense as compared to P. fluorescens
alone inoculated soil. The talc formulation of Pfm strain also reduced vascular discolouration due to the pathogen in banana plants when inoculated at 15 g/plant.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES(48)
1.
Blazevic D.J, Koepcke M.H., Matsen J.M. 1973. Incidence and identification of Pseudomonas fluorescens and Pseudomonas putida in the clinical laboratory. J. Appl. Microbiol. 25: 107–110.
Bonsall R.F., Weller D.M., Thomashow L.S. 1997. Quantification of 2,4-diacetyl phloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol. 63: 951–955.
Brodsky M.H., Nixon M.C. 1973. Rapid method for detection of Pseudomonas aeroginosa on McConkey-agar under ultra violet. J. Appl. Microbiol. 26: 219–220.
Chang P.C., Blackwood A.C. 1969. Simultaneous production of three phenazine - 1- carboxylic acid pigments by Pseudomonas aureofaciens. Mac 436. Can. J. Microbiol. 15: 439–444.
Deese C.D., Stahman A.M. 1962. Pectic enzymes and cellulase formation by Fusarium oxysporum f. sp. cubense of stem tissues from resistant and susceptible banana plants. Phytopathology 52: 247–255.
Duffy B.K., Defago G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic synthesis. Phytopathology 87: 1250–1257.
Garagulya A.D., Kiprianova E.A., Boiko O.I. 1974. Antibiotic effect of bacteria from the genus Pseudomonas on phytopathogenic fungi. Microbiology (Kiev) 36: 197–202.
Gould W., Hagedorn C., Bardinelli T., Zoblotowicz R. 1985. New selective media for enumeration and recovery of fluorscent pseuodomonads from various habitats. Appl. Environ. Microbiol. 49: 28–32.
Howell C.R., Stipanovic R.D. 1980. Suppression of Pythium ultimum induced damping off seedlings by Pseudomona fluorescens and its antibiotic, pyoluteorin. Phytopathology 70: 712–715.
Keel C., Wirthner P., Obeshansli T., Voisard C., Burger U., Hass D., Defago G. 1990. Pseudomonas as antagonists of plant pathogens in the rhizosphere, role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9: 327–341.
Keel C., Schnider U., Maurhofer M., Voisard C., Laville K., Burger U., Wirthner U. P., Haas D., Defago G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Inter. 5: 4–13.
Marasas W.F.O., Nelson P.E., Tousson T.A. 1984. Toxigenic Fusarium Fusarium species: Identity and Mycotoxicology. The Pennsylvania State University Press, University Park, Pa, 114 pp.
Maurhofer M., Keel C., Schnider U., Voisard C., Hass D., Defago G. 1992. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82: 190–195.
Maurhofer M., Hase C., Meuwly P., Metraux J.P., Defago G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonization Pseudomonas fluorescens strain CHA0: influence of the gac A gene and of pyoverdine production. Phytopathology 84: 139–146.
Notz R., Maurhofer M., Dubach H., Haas D., Défago G. 2002. Fusaric Acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expressions in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of Wheat. Appl. Environ. Microbiol. 68: 2229–2235.
Orjeda G. 1998. Evaluation of Musa germplasm for resistance to sigatoka diseases and Fusarium wilt. INIBAP Technical Guidelines 3. International Plant Genetic Resources Institute, Rome, Italy, p. 29.
Picard C.F., Di Cello F., Ventura M., Fani R., Guckert A. 2000. Frequency and biodiversity of 2,4-diacetylpholoroglucinol producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948–955.
Ploetz R.C., Herbert J., Sebasigari K., Hernandez J.H., Pegg K.G., Ventura J.A., Mayato L.S. 1990. Importance of Fusarium wilt in different banana-growing regions. p. 9. In “Fusarium Wilt of Banana” (R.C. Ploetz, ed.). The APS Press, St. Paul.
Raaijmakers J., Wellers D., Thomashow L. 1997. Frequency of antibiotic producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881–887.
Raaijmakers J.M., Bonsall R.F., Weller D.M. 1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89: 470–475.
Raguchander T., Jayashree K., Samiyappan R. 1997. Management of Fusarium wilt of banana using antagonistic micro-organisms. J. Biol. Control 11: 101–105.
Schippers B., Bakker W., Bakker P.A.H.M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 25: 339–358.
Schnider-Keel U., Seematter A., Maurhofer M., Blumer C., Duffy B., Gigot-Bonnefoy C., Reimmann C., Notz R., Défago G., Haas D., Keel C. 2000. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial.metabolites salicylate and pyoluteorin. J. Bacteriol. 182: 1215–1225.
Shanahan P., Sullivan D.O., Simpson P., Glennon J., O’ Gara F. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonads and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353–358.
Sivamani E., Gnanamanickam S.S. 1988. Biological control of Fusarium oxysporum f. sp. cubense in banana by inoculation with Pseudomonas fluorescens. Plant Soil 107: 3–9.
Sukhada M., Mohan M., Rawal R.D., Chakraborty S., Sreekantappa H., Manjula R., Lakshmikantha H.C. 2004. Interaction of Fusarium oxysporum f. sp. cubense pre colonized to banana roots. World J. Microbiol. Biotechnol. (NLD) 20: 651–655.
Thangavelu R., Palaniswami A., Ramakrishman G., Doraiswamy S., Muthukrishnan S., Velazhahan R. 2001. Involvement of fusaric acid detoxification of Pseudomonas fluorescens strain Pf10 in the biological control of Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense. J.Plant Dis. Protection 108: 433–445.
Thomashow L., Weller D.M. 1988. Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaummannomyces graminis var. tritici. J. Bacteriol 170: 3499–3508.
Thomashow L.S., Weller D.M. 1996. Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites. p. 187–235. In “Plant-Microbe Interactions” (G. Stacey, M. Keen, eds.). Chapman and Hall, New York, Vol. I.
Widen C., Pyysalo H., Salovaara P. 1980. Separation of naturally occurring acetylphloroglucinols by high performance liquid chromatography. J. Chromatography 188: 213–220.
Tomas-Lorente F., Iniesta-San Martin E., Tomas Barberan F.A., Trowitzsch-Kienast W., Wary V. 1989.Antifungal phloroglucinol derivatives and lipophilic flavanoids from Helichrysum decumbens. Phytochemistry 28: 1613–1615.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.