ORIGINAL ARTICLE
Figure from article: Involvement of iturin and...
 
HIGHLIGHTS
  • TS001 showed remarkable inhibition to C. scovillei244830
  • TS001 significantly (P<0.05) reduced rot lesion of fresh green bell pepper fruits
  • TS001 effectively suppressed C. Scovillei 244830 rot lesion
  • TS001 that showed the highest antagonistic activity
KEYWORDS
TOPICS
ABSTRACT
This study aimed to investigate the potential of plant-associated bacteria as bio-control agents for the green bell pepper rot lesion caused by Colletotrichum scovillei 244830. A total of 378 bacteria strains isolated from stems and leaves of healthy red chili and tomato were tested for their antagonistic potential. Isolate TS001 associated with tomato stems was identified as Bacillus spp. It was found that TS001 showed remarkable inhibition to C. scovillei 244830 in in vitro and in vivo tests. TS001 significantly reduced rot lesions (p < 0.05) of fresh green bell pepper fruits by 71.43%. Furthermore, the result of the LC-ESI-MS/MS showed that the culture broth of the strain Bacillus sp. TS001 contained iturin and surfactin homolog in No. 3S medium. TS001 exhibited the strongest antagonistic activity that effectively suppressed C. scovillei 244830 rot lesion.
RESPONSIBLE EDITOR
Assunta Bertaccini
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (46)
1.
Afzal I., Shinwari Z.K., Sikandar S., Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research 221: 36–49. DOI: https://doi.org/10.1016/j.micr....
 
2.
Albdaiwi R.N., Khyami-Horani H., Ayad J.Y. 2019. Plant growth-promoting rhizobacteria: An emerging method for the enhancement of wheat tolerance against salinity stress. Jordan Journal of Biological Sciences 12 (5): 525–534.
 
3.
Baek D., Rokibuzzaman M., Khan A., Kim M.C., Park H.J., Yun D.-J., Chung Y.R. 2020. Plant-growth promoting Bacillus oryzicola YC7007 modulates stress-response gene expression and provides protection from salt stress. Frontiers in Plant Science 10: 1646. DOI: https://doi.org/10.3389/fpls.2....
 
4.
Bakker C., Graham H.R., Popescu I., Li M., McMullin D.R., Avis T.J. 2024. Fungal membrane determinants affecting sensitivity to antifungal cyclic lipopeptides from Bacillus spp. Fungal Biology 128 (7): 2080–2088. DOI: https://doi.org/10.1016/j.funb....
 
5.
Beladjal L., Gheysens T., Clegg J.S., Amar M., Mertens J. 2018. Life from the ashes: Survival of dry bacterial spores after very high temperature exposure. Extremophiles 22 (5): 751–759. DOI: https://doi.org/10.1007/s00792....
 
6.
Bendjedid S., Bazine I., Tadjine A., Djelloul R., Boukhari A., Bensouici C. 2022. Analysis of phytochemical constituents by using LC-MS, antifungal and allelopathic activities of leaves extracts of Aloe vera. Jordan Journal of Biological Sciences 15 (1): 21–28. DOI: https://doi.org/10.54319/jjbs/....
 
7.
Bhattacharya A., Giri V.P., Singh S.P., Pandey S., Chauhan P., Soni S.K., Srivastava S., Singh P.C., Mishra A. 2019. Intervention of bio-protective endophyte Bacillus tequilensis enhance physiological strength of tomato during Fusarium wilt infection. Biological Control 139: 104074. DOI: https://doi.org/10.1016/j.bioc....
 
8.
Dubey P., Chandra R., Gupta P. 2019. Effect of different fungicides against Colletotrichum Capsici caused chilli anthracnose disease. The Pharma Innovation Journal 8 (2): 414–416.
 
9.
FAOSTAT. 2019. Food and agriculture organisation of the united nations [Online]. Available from: https://www.fao.org/faostat/en... [Accessed 14 February 2024].
 
10.
Figueredo M.S., Tonelli M.L., Ibáñez F., Morla F., Cerioni G., del Carmen Tordable M., Fabra A. 2017. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiological Research 197: 65–73. DOI: https://doi.org/10.1016/j.micr....
 
11.
Franco-Sierra N.D., Posada L.F., Santa-María G., Romero-Tabarez M., Villegas-Escobar V., Álvarez J.C. 2020. Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture. Functional & Integrative Genomics 20 (4): 575–589. DOI: https://doi.org/10.1007/s10142....
 
12.
Frank J.A., Reich C.I., Sharma S., Weisbaum J.S., Wilson B.A., Olsen G.J. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16s rRNA genes. Applied and Environmental Microbiology 74 (8): 2461–2470. DOI: https://doi.org/10.1128/AEM.02....
 
13.
Gabiatti N., Yu P., Mathieu J., Lu G.W., Wang X., Zhang H., Soares H.M., Alvarez P.J.J. 2018. Bacterial endospores as phage genome carriers and protective shells. Applied and Environmental Microbiology 84 (18): e01186–01118. DOI: https://doi.org/10.1128/AEM.01....
 
14.
Guerrero-Barajas C., Constantino-Salinas E.A., Amora-Lazcano E., Tlalapango-Ángeles D., Mendoza-Figueroa J.S., Cruz-Maya J.A., Jan-Roblero J. 2020. Bacillus mycoides A1 and Bacillus tequilensis A3 inhibit the growth of a member of the phytopathogen colletotrichum gloeosporioides species complex in avocado. Journal of the Science of Food and Agriculture 100 (10): 4049–4056. DOI: https://doi.org/10.1002/jsfa.1....
 
15.
Haq S., Dubey S., Dhingra P., Verma K.S., Kumari D., Kothari S.L., Kachhwaha S. 2022. Exploring the genetic makeup and population structure among Capsicum accessions for crop improvement and breeding curriculum insights. Journal of Genetic Engineering and Biotechnology 20 (1): 116. DOI: https://doi.org/10.1186/s43141....
 
16.
Hong C.E., Kim J.U., Lee J.W., Lee S.W., Jo I.-H. 2018. Diversity of bacterial endophytes in panax ginseng and their protective effects against pathogens. 3 Biotech 8 (9): 397. DOI: https://doi.org/10.1007/s13205....
 
17.
Hussain M.Y., Ali-Nizam A.A., Abou-Isba S.M. 2017. Antibacterial activities (bacitracin A and polymyxin B) of lyophilized extracts from indigenous Bacillus subtilis against Staphylococcus aureus. Jordan Journal of Biological Sciences 10 (3): 205–212.
 
18.
Jinal N.H., Amaresan N. 2020. Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt-causing pathogens. Archives of Microbiology 202 (7): 1785–1794. DOI: https://doi.org/10.1007/s00203....
 
19.
Jose A.C., Christy P.H. 2013. Assessment of antimicrobial potential of endophytic bacteria isolated from Rhizophora mucronata. International Journal of Current Microbiology and Applied Sciences 2 (10): 188–194.
 
20.
Kaki A.A., Smargiasso N., Ongena M., Ali M.K., Moula N., De Pauw E., Chaouche N.K. 2020. Characterization of new fengycin cyclic lipopeptide variants produced by Bacillus amyloliquefaciens (ET) originating from a salt lake of Eastern Algeria. Current Microbiology 77 (3): 443–451. DOI: https://doi.org/10.1007/s00284....
 
21.
Kanto T., Uematsu S., Tsukamoto T., Moriwaki J., Yamagishi N., Usami T., Sato T. 2013. Anthracnose of sweet pepper caused by Colletotrichum scovillei in Japan. Journal of General Plant Pathology 80 (1): 73–78. DOI: https://doi.org/10.1007/s10327....
 
22.
Khedher S.B., Boukedi H., Laarif A., Tounsi S. 2020. Biosurfactant produced by Bacillus subtilis V26: A potential biological control approach for sustainable agriculture development. Organic Agriculture 10 (1): 117–124. DOI: https://doi.org/10.1007/s13165....
 
23.
Köhl J., Kolnaar R., Ravensberg W.J. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science 10: 845. DOI: https://doi.org/10.3389/fpls.2....
 
24.
Koley D., Bard A.J. 2010. Triton X-100 concentration effects on membrane permeability of a single hela cell by scanning electrochemical microscopy (SECM). Proceedings of the National Academy of Sciences 107 (39): 16783–16787. DOI: https://doi.org/10.1073/pnas.1....
 
25.
Kumar A., Verma J.P. 2018. Does plant-microbe interaction confer stress tolerance in plants: A review? Microbiological Research 207: 41–52. DOI: https://doi.org/10.1016/j.micr....
 
26.
Li J., Hu M., Xue Y., Chen X., Lu G., Zhang L., Zhou J. 2020. Screening, identification and efficacy evaluation of antagonistic bacteria for biocontrol of soft rot disease caused by Dickeya zeae. Microorganisms 8 (5): 697. DOI: https://doi.org/10.3390/microo....
 
27.
Ma Y., Kong Q., Qin C., Chen Y., Chen Y., Lv R., Zhou G. 2016. Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC–ESI–MS/MS. AMB Express 6 (1): 79. DOI: https://doi.org/10.1186/s13568....
 
28.
Massadeh M.I., Mahmoud S.M. 2019. Antibacterial activities of soil bacteria isolated from Hashemite University area in Jordan. Jordan Journal of Biological Sciences 12 (4): 503–511.
 
29.
Moghaddam M.R., Moghaddam E.M., Ravari S.B., Rouhani H. 2014. The first report of bacillus pumilus influence against Meloidogyne javanica in Iran. Journal of Crop Protection 3 (1): 105–112.
 
30.
Pan T., He H., Wang X., Shen Y., Zhao J., Yan K., Wang X., Liu C., Zhang J., Xiang W. 2017. Bacillus solisilvae sp. Nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology 67 (11): 4449–4455. DOI: https://doi.org/10.1099/ijsem.....
 
31.
Peng Y.-H., Chou Y.-J., Liu Y.-C., Jen J.-F., Chung K.-R., Huang J.-W. 2017. Inhibition of cucumber pythium damping-off pathogen with zoosporicidal biosurfactants produced by Bacillus mycoides. Journal of Plant Diseases and Protection 124 (5): 481–491. DOI: https://doi.org/10.1007/s41348....
 
32.
Penha R.O., Vandenberghe L.P.S., Faulds C., Soccol V.T., Soccol C.R. 2020. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: Recent studies and innovations. Planta 251 (3): 70. DOI: https://doi.org/10.1007/s00425....
 
33.
Rezamahalleh H.M., Khodakaramian G., Hassanzadeh N. 2019. Diversity of endophytic and epiphytic bacteria from sugarcane in Khuzestan, Iran. Brazilian Archives of Biology and Technology 62: e19180407. DOI: https://doi.org/10.1590/1678-4....
 
34.
Romero D., De Vicente A., Rakotoaly R.H., Dufour S.E., Veening J.-W., Arrebola E., Cazorla F.M., Kuipers O.P., Paquot M., Pérez-García A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions® 20 (4): 430–440. DOI: https://doi.org/10.1094/MPMI-2....
 
35.
Setiaji A., Annisa R.R.R., Rahmandhias D.T. 2023. Bakteri Bacillus sebagai agen kontrol hayati dan biostimulan tanaman. Rekayasa 16 (1): 96–106. DOI: https://doi.org/10.21107/rekay....
 
36.
Shabanamol S., Thampi M., Sajana P., Varghese S., Karthika S., George T.K., Jisha M.S. 2021. Characterization of the major antifungal extrolite from rice endophyte Lysinibacillus sphaericus against Rhizoctonia solani. Archives of Microbiology 203 (5): 2605–2613. DOI: https://doi.org/10.1007/s00203....
 
37.
Sreelakshmi K.P., Madhuri M., Swetha R., Rangarajan V., Roy U. 2024. Microbial lipopeptides: Their pharmaceutical and biotechnological potential, applications, and way forward. World Journal of Microbiology and Biotechnology 40 (4): 135. DOI: https://doi.org/10.1007/s11274....
 
38.
Sun D., Liao J., Sun L., Wang Y., Liu Y., Deng Q., Zhang N., Xu D., Fang Z., Wang W., Gooneratne R. 2019. Effect of media and fermentation conditions on surfactin and iturin homologues produced by Bacillus natto NT-6: LC–MS analysis. AMB Express 9 (1): 120. DOI: https://doi.org/10.1186/s13568....
 
39.
Thongjun J., Tansila N., Panthong K., Tanskul S., Nishibuchi M., Vuddhakul V. 2016. Inhibitory potential of biosurfactants from Bacillus amyloliquefaciens derived from mangrove soil against Vibrio parahaemolyticus. Annals of Microbiology 66 (3): 1257–1263. DOI: https://doi.org/10.1007/s13213....
 
40.
Tran T.P.H., Wang S.-L., Nguyen V.B., Tran D.M., Nguyen D.S., Nguyen A.D. 2019. Study of novel endophytic bacteria for biocontrol of black pepper root-knot nematodes in the central highlands of Vietnam. Agronomy 9 (11): 714. DOI: https://doi.org/10.3390/agrono....
 
41.
Wang C., Zhao D., Qi G., Mao Z., Hu X., Du B., Liu K., Ding Y. 2020. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis REHD. and inhibiting Fusarium verticillioides. Frontiers in Microbiology 10: 2889. DOI: https://doi.org/10.3389/fmicb.....
 
42.
Wang S., Xu M., Han Y., Zhou Z. 2024. Exploring mechanisms of antifungal lipopeptide iturin a from Bacillus against Aspergillus niger. Journal of Fungi 10 (3): 172. DOI: https://doi.org/10.3390/jof100....
 
43.
Yang H., Li X., Li X., Yu H., Shen Z. 2015. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Analytical and Bioanalytical Chemistry 407 (9): 2529–2542. DOI: https://doi.org/10.1007/s00216....
 
44.
Yuliar, Koki T., Kenji Y. 2015. Characterization of possible bacterial biocontrol agents, isolated from various plants in Indonesia, against bacterial wilt and damping-off of tomato. Soil Microorganisms 69 (1): 39–47.
 
45.
Zohora U.S., Rahman M.S., Ano T. 2009. Biofilm formation and lipopeptide antibiotic iturin a production in different peptone media. Journal of Environmental Sciences 21: S24–S27. DOI: https://doi.org/10.1016/S1001-....
 
46.
Zubrod J.P., Bundschuh M., Arts G., Brühl C.A., Imfeld G., Knäbel A., Payraudeau S., Rasmussen J.J., Rohr J., Scharmüller A., Smalling K., Stehle S., Schulz R., Schäfer R.B. 2019. Fungicides: An overlooked pesticide class? Environmental Science & Technology 53 (7): 3347–3365. DOI: https://doi.org/10.1021/acs.es....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top