ORIGINAL ARTICLE
The effects of biotic and abiotic stress on the emission of volatile organic compounds by sugar beet plants
More details
Hide details
1
Department of Monitoring and Signaling of Agrophages, Institute of Plant Protection – National Research Institute, Poznań, Poland
2
Department of Entomology and Animal Pests, Institute of Plant Protection – National Research Institute, Poznań, Poland
3
Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
4
Department of Chemistry, University of Turin, Torino, Italy
5
Institute for Breath Research, Universität Innsbruck, Innrain, Innsbruck, Austria
6
Department of Food Analysis and Environmental Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
7
Department of Microbiology and Ecology of the Plants, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2025-02-26
Acceptance date: 2025-04-29
Online publication date: 2025-09-01
HIGHLIGHTS
- The composition of VOCs released by sugar beet plants after injury was evaluated
- Ten volatiles were identified following the biotic/abiotic stress; GLVs and VOCs
- Three were emitted with significantly higher quantities: β-PIN, β-CAR, and BAC
KEYWORDS
TOPICS
ABSTRACT
Tetranychus utricae Koch (the two-spotted spider mite, TSSM) is a major pest of sugar
beet plants (Beta vulgaris L.), which quickly develops resistance to miticides. Volatile organic
compounds (VOCs) have the potential of providing an environmentally friendly alternative
to currently used insecticides. The main goal of this study was to evaluate the
changes in the qualitative and quantitative composition of the VOCs released by sugar
beet plants under drought conditions, TSSM infestation, or subjected to combined types
of stress. Volatiles were collected over a 2 h period on days 2, 3 and 6 following TSSM
feeding and/or drought and, following elution, were analyzed by gas chromatography
with mass spectrometric detection. In particular, plants that were subjected to combined
abiotic and biotic stress resulted in even higher levels of VOCs being released than from
plants subjected to a single stress. Ten key volatiles were identified, namely: (Z)-3-hexenal,
(Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexen-1-yl acetate, (Z)-ocimene, linalool,
β-pinene, (E)-β-farnesene, β-caryophyllene and benzyl acetate. Of these 10, three were
emitted with significantly higher quantities than the other seven: β-pinene, β-caryophyllene
and benzyl acetate. This suggests that these three volatiles are potentially the most useful
as natural alternatives to synthetic miticides to protect sugar beet crops from TSSM. Further
research is needed to assess this hypothesis and to determine their activity against the
mites.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (53)
1.
Alavilli H., Yolcu S., Skorupa M., Aciksoz S.B., Asif M. 2023. Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. Planta 258 (2): 1–24. DOI: 10.1007/s00425-023-04189-x.
2.
Assouguem A., Kara M., Mechchate H., Korkmaz Y.B., Benmessaoud S., Ramzi A., Abdullah K.R., Noman O.M., Farah A., Lazraq A. 2022. Current Situation of Tetranychus urticae (Acari: Tetranychidae) in Northern Africa: The Sustainable Control Methods and Priorities for Future Research. Sustainability (Switzerland) 14 (4): 1–14. DOI: 10.3390/su14042395.
3.
Ayelo P.M., Pirk C.W.W., Yusuf A.A., Chailleux A., Mohamed S.A., Deletre E. 2021. Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Control: A Review. Frontiers in Ecology and Evolution. DOI: 10.3389/fevo.2021.641974.
4.
Bocianowski J., Liersch A. 2022. Multidimensional Analysis of Diversity in Genotypes of Winter Oilseed Rape (Brassica napus L.). Agronomy 12 (3). DOI: 10.3390/agronomy12030633.
5.
Bocianowski J., Majchrzak L. 2019. Analysis of effects of cover crop and tillage method combinations on the phenotypic traits of spring wheat (Triticum aestivum L.) using multivariate methods. Applied Ecology and Environmental Research 17 (6): 15267–15276. DOI: 10.15666/aeer/1706_1526715276.
6.
Cao D., Liu J., Zhao Z., Yan X., Wang W., Wei J. 2022. Chemical Compounds Emitted from Mentha spicata Repel Aromia bungii Females. Insects 13 (3): 1–11. DOI: https: 10.3390/insects13030244.
8.
Chandrasekaran U., Byeon S., Kim K., Kim S.H., Park C.O., Han reum A., Lee Y.S., Kim H.S. 2022. Short-term severe drought influences root volatile biosynthesis in eastern white pine (Pinus strobus L). Frontiers in Plant Science. 1–14. DOI: 10.3389/fpls.2022.1030140.
9.
Copolovici L., Kännaste A., Remmel T., Niinemets Ü. 2014. Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environmental and Experimental Botany 100: 55–63. DOI: 10.1016/j.envexpbot.2013.12.011.
10.
Degenhardt J., Hiltpold I., Köllne T.G., Frey M., Gierl A., Gershenzon J., Hibbard B.E., Ellersieck M.R., Turlings T.C.J. 2009. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences of the United States of America 106 (32): 13213–13218. DOI: 10.1073/pnas.0906365106.
11.
Dicke M., Baldwin I.T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help.” Trends in Plant Science 15 (3): 167–175. DOI: 10.1016/j.tplants.2009.12.002.
12.
Gay H. 2012. Before and after silent spring: From chemical pesticides to biological control and integrated pest management-Britain, 1945–1980. Ambix 59 (2): 88–108. DOI: 10.1179/174582312X13345259995930.
13.
Gouinguené S.P., Turlings T.C.J. 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiology 129 (3): 1296–1307. DOI: 10.1104/pp.001941.
14.
Jakubowska M., Dobosz R., Zawada D., Kowalska J. 2022. A Review of Crop Protection Methods against the Twospotted Spider Mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With Special Reference to Alternative Methods. Agriculture 12 (7), 898. DOI: 10.3390/agriculture12070898.
15.
Jakubowska M., Fiedler Ż., Bocianowski J., Torzyński K. 2018. The effect of spider mites (Acari: Tetranychidae) occurence on sugar beet yield depending on the variety. Agronomy Science 73 (1): 41–50. DOI: 10.24326/asx.2018.1.4.
16.
Kumar D., Raghuraman M., Singh J. 2015. Population dynamics of spider mite, Tetranychus urticae Koch on okra in relation to abiotic factors of Varanasi region. Journal of Agrometeorology 17 (1): 102–106. DOI:
https://doi.org/10.54386/jam.v....
17.
Lazazzara V., Avesani S., Robatscher P., Oberhuber M., Pertot I., Schuhmacher R., Perazzolli M. 2022. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. Journal of Experimental Botany 73 (2): 529–554. DOI:
https://doi.org/10.1093/jxb/er....
18.
Van Leeuwen T., Dermauw W., Grbic M., Tirry L., Feyereisen R. 2013. Spider mite control and resistance management: Does a genome help? Pest Management Science 69 (2): 156–159. DOI:
https://doi.org/10.1002/ps.333....
20.
Lucini T., Faria M.V., Rohde C., Resende J.T.V., de Oliveira J.R.F. 2015. Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod-Plant Interactions 9 (1): 45–53. DOI:
https://doi.org/10.1007/s11829....
21.
Mahalanobis P.C. 2018. On generalized distance in statistics (Reprinted). The Indian Journal of Statistics. 80-A Suppl (1): S1–S7.
23.
Neher O.T., Barbour J. 2019. Twospotted Spider Mite on Sugar Beet : Importance, Identification and Management. Bul 930, University of Idaho.
24.
Ninkovic V., Markovic D., Rensing M. 2021. Plant volatiles as cues and signals in plant communication. Plant Cell and Environment 44 (4): 1030–1043. DOI:
https://doi.org/10.1111/pce.13....
25.
Orlovskis Z., Canale M.C., Thole V., Pecher P., Lopes J.R., Hogenhout S.A. 2015. Insect-borne plant pathogenic bacteria: getting a ride goes beyond physical contact. Current opinion in insect science 9: 16—23. DOI:
https://doi.org/10.1016/j.cois....
26.
Piesik D., Lemńczyk G., Skoczek A., Lamparski R., Bocianowski J., Kotwica K., Delaney K.J. 2011a. Fusarium infection in maize: Volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. Journal of Plant Physiology 168 (13): 1534–1542. DOI:
https://doi.org/10.1016/j.jplp....
27.
Piesik D., Pańka D., Delaney K.J., Skoczek A., Lamparski R., Weaver D.K. 2011b. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.). Journal of Plant Physiology 168 (9): 878–886. DOI:
https://doi.org/10.1016/j.jplp....
28.
Piesik D., Bocianowski J., Kotwica K., Lemańczyk G., Piesik M., Ruzsanyi V., Mayhew C. A. 2022. Responses of adult Hypera rumicis L. to synthetic plant volatile blends. Molecules 27 (19): 6290. DOI:
https://doi.org/10.3390/molecu....
29.
Piesik D., Łyczko J., Krawczyk K., Gantner M., Bocianowski J., Ruzsanyi V., Mayhew C. A. 2023. Green Leaf Volatile Function in Both the Natural Defense System of Rumex confertus and Associated Insects’ Behavior. Applied Sciences 13 (4): 2253 DOI:
https://doi.org/10.1111/j.1439....
30.
Piesik D., Miler N., Lemańczyk G., Tymoszuk A., Lisiecki K., Bocianowski J., Krawczyk K., Mayhew C. A. 2024. Induction of volatile organic compounds in chrysanthemum plants following infection by Rhizoctonia solani. Plos one. 19 (5): DOI: 10.1371/journal.pone.0302541.
31.
Rahman M.S. 2023. The effect of global change on multitrophic interactions of sugar beet.
32.
Rahman S., Rostás M., Vosteen I. 2024. Drought aggravates plant stress by favouring aphids and weakening indirect defense in a sugar beet tritrophic system. Journal of Pest Science. DOI:
https://doi.org/10.1007/s10340....
33.
Rioja C., Zhurov V., Bruinsma K., Grbic M., Grbic V. 2017. Plant-herbivore interactions: A case of an extreme generalist, the two-spotted spider mite Tetranychus urticae. Molecular Plant-Microbe Interactions 30 (12): 935–945. DOI:
https://doi.org/10.1094/MPMI-0....
34.
Salerno G., Frati F., Marino G., Ederli L., Pasqualini S., Loreto F., Colazza S., Centritto M. 2017. Effects of water stress on emission of volatile organic compounds by Vicia faba, and consequences for attraction of the egg parasitoid Trissolcus basalis. Journal of Pest Science 90 (2): 635–647. DOI:
https://doi.org/10.1007/s10340....
35.
dos Santos T.B., Ribas A.F., de Souza S.G.H., Budzinski I.G.F., Domingues D.S. 2022. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2 (1): 113–135. DOI:
https://doi.org/10.3390/stress....
36.
Seidler-Łożykowska K., Bocianowski J. 2012. Evaluation of variability of morphological traits of selected caraway (Carum carvi L.) genotypes. Industrial Crops and Products 35 (1): 140–145. DOI:
https://doi.org/10.1016/j.indc....
37.
Sendel S., Bocianowski J., Buszewski B., Piesik M., Mayhew C. A., Piesik, D. 2022. Volatile organic compounds released by wheat as a result of striped shieldbug feeding and insect behaviour. Journal of Applied Entomology 146 (6): 710-724. DOI:
https://doi.org/10.1111/jen.12....
38.
Shaabow A., Ahmad M., Zidan R. 2019. The Biological Control of Two Spotted Spider Mites using the Predatory Mite on Bean Grown under Greenhouse Conditions. International Journal of Agriculture & Environmental Science 6 (2): 63–69. DOI: 10.14445/23942568/ijaes-v6i2p112.
40.
Sharifi R., Ryu C.M. 2021. Social networking in crop plants: Wired and wireless cross-plant communications. Plant, Cell & Environment 44 (4): 1095–1110. DOI:
https://doi.org/10.1111/PCE.13....
41.
Stevanato P., Chiodi C., Broccanello C., Concheri G., Biancardi E., Pavli O., Skaracis G. 2019. Sustainability of the Sugar Beet Crop. Sugar Tech. 21 (5): 703–716. DOI: 10.1007/s12355-019-00734-9.
42.
Suzuki N., Rivero R.M., Shulaev V., Blumwald E., Mittler R. 2014. Abiotic and biotic stress combinations. New Phytologist 203 (1): 32–43. DOI:
https://doi.org/10.1111/nph.12....
43.
Takabayashi J., Dicke M., Posthumus M.A. 1994. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. Journal of Chemical Ecology 20 (6): 1329–1354. DOI:
https://doi.org/10.1007/BF0205....
44.
Tehri K., 2014. A review on reproductive strategies in two spotted spider mite. 2 (5): 35–39.
45.
Truong D.H., Delaplace P., Brostaux Y., Heuskin S., Francis F., Lognay G. 2014. Myzus persicae Feeding on Water Stressed-Arabidopsis Affects the Emission Profile of Plant Volatile Organic Compounds. Journal of Environment and Ecology 5 (2): 276. DOI:
https://doi.org/10.5296/jee.v5....
46.
Turtola S., Manninen A.M., Rikala R., Kainulainen P. 2003. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. Journal of Chemical Ecology 29 (9): 1981–1995. DOI:
https://doi.org/10.1023/A:1025....
47.
Unsicker S.B., Kunert G., Gershenzon J. 2009. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Current Opinion in Plant Biology 12 (4): 479–485. DOI:
https://doi.org/10.1016/j.pbi.....
48.
Vallat A., Gu H., Dorn S. 2005. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 66 (13): 1540–1550. DOI:
https://doi.org/10.1016/j.phyt....
49.
VSN International Genstat for Windows, 23rd ed.; VSN International: Hemel Hempstead, UK, (2023).
50.
Wei J., Wang L., Zhu J., Zhang S., Nandi O.I., Kang L. 2007. Plants attract parasitic wasps to defend themselves against insect pests by releasing hexenol. PLoS One 2 (9): 1–7. DOI:
https://doi.org/10.1371/journa....
51.
Wrońska-Pilarek D., Szkudlarz P., Bocianowski J. 2018. Systematic importance of morphological features of pollen grains of species from Erica (Ericaceae) genus. PLoS One 1–31. DOI:
https://doi.org/10.1371/journa....
52.
Xiao Y., Wang Q., Erb M., Turlings T.C.J., Ge L., Hu L., Li J., Han X., Zhang T., Lu J., Zhang G., Lou Y. 2012. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecology Letters 15 (10): 1130–1139. DOI:
https://doi.org/10.1111/j.1461....
53.
Zicari S., Zhang R., Kaffka S. 2019. Chapter 13 - Sugar Beet. p. 331–351. In: “Integrated Processing Technologies for Food and Agricultural By-Products” (Pan Z., Zhang R., Zicari S., eds.). Academic Press. DOI:
https://doi.org/https://doi.or....