ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Lavandula multifida essential oil demonstrated pronounced acute toxicity against Spodoptera littoralis and Agrotis ipsilon
  • L. multifida EO elicited a noteworthy reduction in larval and pupal durations of S. littoralis
  • The LC50 concentration of lavender EO exhibited a substantial inhibition of α-esterase activity in both species
  • The results suggest the potential utility of L. multifida in Lepidoptera management
KEYWORDS
TOPICS
ABSTRACT
The use of essential oils as an eco-friendly tool in pest management stems from their natural origin and the presence of bioactive compounds that exhibit pesticidal properties, offering a sustainable alternative to synthetic chemical pesticides. This study explores the toxicity of Lavandula multifida (lavender) essential oil (EO), as a botanical pesticide against two widespread and destructive Noctuidae pests, Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufnagel). GC-MS was employed to characterize 23 compounds in the EO, with 1,3,3-trimethyl-2-oxabicyclo [2.2.2] octane (eucalyptol) (39.84%), being the primary component. The leaf dipping technique was utilized to assess the toxicity of the EO to both insects. At 96 hours post-treatment, the LC50 of lavender EO to S. littoralis and A. ipsilon larvae were 2.350 and 2.991 mg · ml–1, respectively. Concerning its biological effect, both concentrations of the EO (LC15 and LC50) significantly shortened the duration of the larval (to 15.24 and 14.23 days) and pupal (to 11.19 and 10.55 days) stages of S. littoralis. Biochemical assays revealed that the LC50 of lavender EO significantly inhibited α-esterase activity in S. littoralis at 72- and 96 hours post-treatment (0.031 and 0.063 mmol · min–1 · mg–1), and A. ipsilon at 96 hours post-treatment (0.129 mmol · min–1 · mg–1 protein). Given its significant toxicological, biological, and biochemical effects on S. littoralis, it is suggested that lavender EO could be considered for use in integrated pest management strategies while ensuring its safe application to protect non-target organisms.
ACKNOWLEDGEMENTS
Special thanks are due to Dr. Hamed Khairullah Said for revising and editing the manuscript for grammatical correctness, coherence, and sense. Dr, Said is an Associate Professor of pesticide toxicology at the Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Egypt, and a holder of a BA in English Linguistics and Translations.
RESPONSIBLE EDITOR
Jolanta Kowalska
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (59)
1.
Abbott W.S. 1925. A Method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2): 265–267. DOI: https://doi.org/10.1093/jee/18....
 
2.
Abdelaal K., Essawy M., Quraytam A., Abdallah F., Mostafa H., Shoueir K., Fouad H., Hassan F.A.S., Hafez Y. 2021. Toxicity of essential oils nanoemulsion against Aphis craccivora and their inhibitory activity on insect enzymes. Processes 9 (4): 624. DOI: https://doi.org/10.3390/pr9040....
 
3.
Ahmed F.S., Helmy Y.S., Helmy W.S. 2022. Toxicity and biochemical impact of methoxyfenozide/spinetoram mixture on susceptible and methoxyfenozide-selected strains of Spodoptera littoralis (Lepidoptera: Noctuidae). Scientific Reports 12 (1): 6974. DOI: https://doi.org/10.1038/s41598....
 
4.
Al-Harbi N.A., Al Attar N.M., Hikal D.M., Mohamed S.E., Abdel Latef A.A., Ibrahim A.A., Abdein M.A. 2021. Evaluation of insecticidal effects of plants essential oils extracted from basil, black seeds and lavender against Sitophilus oryzae. Plants 10 (5): 829. DOI: https://doi.org/10.3390/plants....
 
5.
Asperen K.V. 1962. A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology 8 (4): 401–416. DOI: https://doi.org/10.1016/0022-1....
 
6.
Awad M., Ibrahim E. D., Osman E., Elmenofy W., Wahab A., Mahmoud M., Omar M.A., Moustafa M. 2022. Nano-insecticides against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): Toxicity development enzyme activity and DNA mutagenicity. Plos One 17: 21. DOI: https://doi.org/10.1371/journa....
 
7.
Bassolé I.H.N., Juliani H.R. 2012. Essential oils in combination and their antimicrobial properties. Molecules 17 (4): 3989–4006 DOI: https://doi.org/10.3390/molecu....
 
8.
Beale D.J., Morrison P.D., Karpe A.V., Dunn M.S. 2017. Chemometric analysis of lavender essential oils using targeted and untargeted GC-MS acquired data for the rapid identification and characterization of oil quality. Molecules 22 (8): 1339. DOI: https://doi.org/10.3390/molecu....
 
9.
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254. DOI: https://doi.org/10.1006/abio.1....
 
10.
Costa T.L., Santos R.C., Santos A.A., Pimentel E.D., Lima E., Batista C.V., Bacci L., Freitas D.R., Picanço M.C. 2023. Lethal and sublethal effects of an essential oil-based emulsion of patchouli Pogostemon cablin (Lamiaceae) on the tomato leafminer. Agriculture 13 (8): 1540. DOI: https://doi.org/10.3390/agricu....
 
11.
Danila E., Kaya D., Mariana P., Kaya M., Kumbakisaka S. 2018. Comparative study of Lavandula angustifolia essential oils obtained by microwave and classical hydrodistillation. Revista de Chimie 69: 2240–2244. DOI: https://doi.org/10.37358/RC.18....
 
12.
Döker İ., Kazak C., Ay R. 2021. Resistance status and detoxification enzyme activity in ten populations of Panonychus citri (Acari: Tetranychidae) from Turkey. Crop Protection 141: 105488. DOI: https://doi.org/10.1016/j.crop....
 
13.
Dunan L., Malanga T., Benhamou S., Papaiconomou N., Desneux N., Lavoir A.V., Michel T. 2023. Effects of essential oil-based formulation on biopesticide activity. Industrial Crops and Products 202: 117006. DOI: https://doi.org/10.1016/j.indc....
 
14.
Dutton A., Romeis J., Bigler F. 2005. Effects of Bt maize expressing Cry1Ab and Bt spray on Spodoptera littoralis. Entomologia Experimentalis et Applicata 114: 161–169. DOI: https://doi.org/10.1111/j.1570....
 
15.
Dyadiuchenko L., Taranenko V., Muraviev V., Dmitrieva I. 2020. The study of natural essential oils as growth regulators of winter wheat. BIO Web Conference 21 (00023): 1–6 DOI: https://doi.org/10.1051/biocon....
 
16.
Ebadollahi A., Ziaee M., Palla F. 2020. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules 25 (7): 1556. DOI: https://doi.org/10.3390/molecu....
 
17.
Ebadollahi A., Jalali Sendi J., Ziaee M., Krutmuang P. 2021. Acaricidal, insecticidal, and nematicidal efficiency of essential oils isolated from the satureja genus. International Journal of Environmental Research and Public Health 18 (11): 6050. DOI: https://doi.org/10.3390/ijerph....
 
18.
Eesa N.M., El-Sherif H., El-Sayed W.M., Abd El-Monem D. 2017. Toxicity of selected botanicals to the cotton leaf worm Spodoptera littoralis (Boisd.). International Journal of Advanced Research 5: 771–776. DOI: http://dx.doi.org/10.21474/IJA....
 
19.
El-Shourbagy N.M., Farag S.M., Moustafa M.A.M., Al-Shuraym L.A., Sayed S., Zyaan O.H. 2023. Biochemical and insecticidal efficacy of clove and basil essential oils and two photosensitizers and their combinations on Aphis gossypii Glover (Hemiptera: Aphididae). Bioscience Journal 39: 1–14. DOI: https://doi.org/10.14393/BJ-v3....
 
20.
Farahani S., Bandani A.R., Amiri A. 2020. Toxicity and repellency effects of three essential oils on two populations of Tetranychus urticae (Acari: Tetranychidae). Persian Journal of Acarology 9 (1): 67–81.DOI: https://doi.org/10.22073/pja.v....
 
21.
Fergani Y.A., Elbanna H.M., Hamama H.M. 2020. Genotoxicity of some plant essential oils in cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae): the potential role of detoxification enzymes. Egyptian Journal of Zoology 73 (73): 53–66 DOI: https://doi.org/10.21608/ejz.2....
 
22.
Fouad E., Ahmed F., Moustafa M. 2022. Monitoring and biochemical impact of insecticides resistance on field populations of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt. Polish Journal of Entomology 91: 109–118. DOI: https://doi.org/10.5604/01.300....
 
23.
Garrido-Miranda K., Giraldo Pedraza J., Schoebitz M. 2022. Essential oils and their formulations for the control of Curculionidae pests. Frontiers in Agronomy 4: 876687. DOI: https://doi.org/10.3389/fagro.....
 
24.
Giunti G., Palermo D., Laudani F., Algeri G.M., Campolo O., Palmeri V. 2019. Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Industrial Crops and Products 142: 111869. DOI: https://doi.org/10.1016/j.indc....
 
25.
Habig W.H., Pabst M.J., Jakoby W.B. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry 249 (22): 7130–7139. DOI: https://doi.org/10.1016/S0021-....
 
26.
Hansen L.G., Hodgson E. 1971. Biochemical characteristics of insect microsomes. N- and O-demethylation. Biochemical Pharmacology 20 (7): 1569–1578. DOI: https://doi.org/10.1016/0006-2....
 
27.
Ismail S.M. 2023. Synergistic effects of suppress resistance of cypermethrin and chlorpyrifos in the cotton leafworm Spodoptera littoralis (Boisduval) populations in Egypt. International Journal of Tropical Insect Science 43: 1669–1674. DOI: https://doi.org/10.1007/s42690....
 
28.
Isman M., Machial C.M. 2006. Pesticides based on plant essential oils: From traditional practice to commercialization. Naturally Occurring Bioactive Compounds 3: 29–44. DOI: https://doi.org/10.1016/S1572-....
 
29.
Keegan K.L., Rota J., Zahiri R., Zilli A., Wahlberg N., Schmidt B.C., Lafontaine J.D., Goldstein P.Z., Wagner D.L. 2021. Toward a stable global Noctuidae (Lepidoptera) taxonomy. Insect Systematics and Diversity 5 (3): 1. DOI: https://doi.org/10.1093/isd/ix....
 
30.
Khalifa M.H., Bedair A.F., Zewail M.Z. 2023. Biochemical alterations in cotton leafworm Spodoptera littoralis (Boisd.) related to emamectin benzoate and fipronil compared to their joint action. Pesticide Biochemistry and Physiology 194: 105505. DOI: https://doi.org/10.1016/j.pest....
 
31.
Kirti J.S., Dar M.A. 2013. Keys for the identification and segregation of Noctuid subfamilies. Insect Environment 19 (3): 176–179. DOI: https://quelestcetanimal-lagal....
 
32.
Koul O., Walia S., Dhaliwal G.S., Nagar P. 2008. Essential oils as green pesticides: Potential and Constraints. Biopesticide International 4 (1): 63–84. DOI: https://api.semanticscholar.or....
 
33.
Le Goff G., Nauen R. 2021. Recent advances in the understanding of molecular mechanisms of resistance in noctuid pests. Insects 12 (8): 1–2. DOI: https://doi.org/10.3390/insect....
 
34.
Lee D., Potter D. 2013. Effect of essential oils and paraffin oil on black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Weed & Turfgrass Science 2 (1): 62–69. DOI: https://doi.org/10.5660/WTS.20....
 
35.
Lee M.Y. 2018. Essential oils as repellents against arthropods. BioMed Research International 6860271. DOI: https://doi.org/10.1155/2018/6....
 
36.
Lengai G.M.W., Muthomi J.W., Mbega E.R. 2020. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African 7: 1–13. DOI: https://doi.org/10.1016/j.scia....
 
37.
Moustafa M.A.M., Awad M., Amer A., Hassan N., Ibrahim E.D., Ali H., Akrami M., Salem M. 2021. Insecticidal activity of lemongrass essential oil as an eco-friendly agent against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects 12 (8): 737. DOI: https://doi.org/10.3390/insect....
 
38.
Moustafa M.A.M., Elmenofy H.W., Osman A.E., El-Said A.N., Awad M. 2022. Biological impact oxidative stress and adipokinetic hormone activities of Agrotis ipsilon in response to bioinsecticides. Plant Protection Science 58 (4): 326–337. DOI: https://doi.org/10.17221/46/20....
 
39.
Moustafa M.A.M., Hassan N.N., Alfuhaid N.A., Amer A., Awad M. 2023b. Insights into the toxicity biochemical activity and molecular docking of Cymbopogon citratus essential oils and citral on Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology 116 (4): 1185–1195. DOI: https://doi.org/10.1093/jee/to....
 
40.
Moustafa M.A.M., Moteleb R.I.A., Ghoneim Y.F., Hafez S.S., Ali R.E., Eweis E.E.A., Hassan N.N. 2023a. Monitoring resistance and biochemical studies of three Egyptian field strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to six insecticides. Toxics 11 (3): 211. DOI: https://doi.org/10.3390/toxics....
 
41.
Moustafa M.A.M., Osman E.A., Mokbel E.M.S., Fouad E.A. 2024. Biochemical and molecular characterization of chlorantraniliprole resistance in Spodoptera littoralis (Lepidoptera: Noctuidae). Crop Protection 177: 106533. DOI: https://doi.org/10.1016/j.crop....
 
42.
Ngegba P.M., Cui G., Khalid M.Z., Li Y., Zhong G. 2022. Prospects of botanical compounds and pesticides as sustainable management strategies against Spodoptera frugiperda. Journal of Economic Entomology 115: 1834–1845. DOI: https://doi.org/10.1093/jee/to....
 
43.
Ootani M., Aguiar R., Carlos A., Ramos C., Brito D., Silva J., João E., Cajazeira P. 2013. Use of essential oils in agriculture. Journal of Biotechnology and Biodiversity 4 (2): 162–175. DOI: https://api.semanticscholar.or....
 
44.
Othman K.S.A., Swelam E.S., Ahmed F.S. 2020. A laboratory study of the toxicity of indoxacarb mixtures against Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). African Entomology 28 (2): 290–299. DOI: https://doi.org/10.4001/003.02....
 
45.
Palli S.R., Biondi A., Desneux N., Du Plessis H., Le Goff G., Volkoff A.N. 2023. The fall armyworm: recent advances in biology and management. Journal of Pest Science 96 (4): 1341–1343. DOI: https://doi.org/10.1007/s10340....
 
46.
Piesik D., Wenda-Piesik A., Krasińska A., Wrzesińska D., Delaney K. 2016. Volatile organic compounds released by Rumex confertus following Hypera rumicis herbivory and weevil responses to volatiles. Journal of Applied Entomology 140: 308–316. DOI: https://doi.org/10.1111/jen.12....
 
47.
Qi Y.T., Wang J.Z., Zheng Y., Zhang J.W., Du S.S. 2024. Chemical composition and insecticidal activities of Blumea balsamifera (Sambong) essential oil against three stored product insects. Journal of Food Protection 87 (1): 100205. DOI: https://doi.org/10.1016/j.jfp.....
 
48.
Raveau R., Fontaine J., Lounès-Hadj Sahraoui A. 2020. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods 9 (3): 365. DOI: https://doi.org/10.3390/foods9....
 
49.
Regier J.C., Mitter C., Mitter K., Cummings M.P., Bazinet A.L., Hallwachs W., Janzen D.H., Zwick A. 2017. Further progress on the phylogeny of Noctuidae (Insecta: Lepidoptera) using an expanded gene sample. Systematic Entomology 42 (1): 82–93 DOI: https://doi.org/10.1111/syen.1....
 
50.
Regnault-Roger C., Vincent C., Arnason J. 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annual Review of Entomology 57: 405–24. DOI: https://doi.org/10.1146/annure....
 
51.
Sayada N., Samir T., Soltani N. 2022. Evaluation of a botanical insecticide, lavender (Lavandula angustifolia (M.) essential oil as toxicant, repellent and antifeedant against lesser grain borer (Rhyzopertha dominica (F.). Applied Ecology and Environmental Research 20: 1301–1324. DOI: https://doi.org/10.15666/aeer/....
 
52.
Swelam E.S., Abdel-Rahman H.R., Mossa A.T.H., Ahmed F.S. 2022. Influence of temperature on the toxicity of fipronil to Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Biocatalysis and Agricultural Biotechnology 39: 102277. DOI: https://doi.org/10.1016/j.bcab....
 
53.
Tong F., Bloomquist J.R. 2013. Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 50 (4): 826–832. DOI: https://doi.org/10.1603/ME1300....
 
54.
Tortorici S., Cimino C., Ricupero M., Musumeci T., Biondi A., Siscaro G., Carbone C., Zappalà L. 2022. Nanostructured lipid carriers of essential oils as potential tools for the sustainable control of insect pests. Industrial Crops and Products 181: 114766. DOI: https://doi.org/10.1016/j.indc....
 
55.
Valcárcel F., Olmeda A.S., González M.G., Andrés M.F., Navarro-Rocha J., González-Coloma A. 2021. Acaricidal and insect antifeedant effects of essential oils from selected aromatic plants and their main components. Frontiers in Agronomy 3: 662802. DOI: https://doi.org/10.3389/fagro.....
 
56.
Wagner L.S., Sequin C.J., Foti N., Campos-Soldini M.P. 2021. Insecticidal, fungicidal, phytotoxic activity and chemical composition of Lavandula dentata essential oil. Biocatalysis and Agricultural Biotechnology 35: 102092. DOI: https://doi.org/10.1016/j.bcab....
 
57.
Wainer J., Thomas A., Chimhau T., Harding K.G. 2022. Extraction of essential oils from Lavandula × intermedia ‘Margaret Roberts’ using steam distillation, hydrodistillation, and cellulase-assisted hydrodistillation: Experimentation and Cost Analysis. Plants 11 (24): 3479. DOI: https://doi.org/10.3390/plants....
 
58.
Zhao J., Tan Y., Jiang Y., Zhu-Salzman K., Xiao L. 2023. CRISPR/Cas9-mediated methoprene-tolerant 1 knockout results in precocious metamorphosis of beet armyworm (Spodoptera exigua) only at the late larval stage. Insect Molecular Biology 32 (2): 132–142. DOI: https://doi.org/10.1111/imb.12....
 
59.
Zuzarte M., Vale-Silva L., Gonçalves M.J., Cavaleiro C., Vaz S., Canhoto J., Pinto E., Salgueiro L. 2012. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. European Journal of Clinical Microbiology & Infectious Diseases: Official publication of the European Society of Clinical Microbiology 31: 1359–1366. DOI: https://doi.org/10.1007/s10096....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top