REVIEW
Nanoencapsulations of essential oils and microbial toxins as insecticides: Case studies for their further optimization
More details
Hide details
1
Pests and Plant Protection Department, Agricultural and Biological Research Institute, National Research Centre, Giza, Egypt
2
Pests and Plant Protection Department, Agricultural and Biological Research Institute, El-Behooth St., Dokki, Giza, Egypt
3
Plant Pathology Department, Agricultural and Biological Research Institute, National Research Centre, El-Behooth St., Dokki, Giza, Egypt
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-06-13
Acceptance date: 2024-08-21
Online publication date: 2025-09-30
Corresponding author
Mahfouz M. M. Abd-Elgawad
Plant Pathology Department, Agricultural and Biological Research Institute, National Research Centre, El-Behooth St., Dokki, Giza, Egypt
Journal of Plant Protection Research 2025;65(3):287-302
HIGHLIGHTS
- Nanoencapsulation lessens the use of unhealthy insecticides
- Their modes of action should be grasped before more expansion
- Importance to wisely incorporate PCR-based technology
- Suggestion to do the evaluation on a case-by-case basis
KEYWORDS
TOPICS
ABSTRACT
Indiscriminate use of excessive insecticides has mounted concerns over human health and
environmental pollution issues. In contrast, nanoencapsulations of many insecticides can
offer a broad range of reliable and mostly safe alternatives based on their nanoparticles
(NPs). These NPs possess virtually all the attributes of ideal biocontrol agents due to their
minute size which economizes usage to wide surface areas and boosts reactivity to increase
effectiveness. Many of their formulations presented herein have proved to render both huge
biocompatibility and supreme efficiency as insecticides. This review aimed to gather information
relevant to expanding and advancing technological tools for optimizing application
of insecticidal essential oils and microbial toxins with the targeted release and protective
merits of encapsulation. It highlights their various applications to demonstrate their merits
compared to other classical and commercial usages. The target pests included a variety of
exemplifying insects of stored grains, farming, and disease-vectors. Yet, limited recorded
data on their possible unfavorable impacts on humans and the environment might call for
their attentive usage particularly in large-scale settings. Hence, the related modes of action
of essential oils and microbial toxins are provided so that they could be used effectively and
carefully. Their insecticidal merits lend further urgency to the need to optimize their role
in pest management as related to challenges and opportunities which are discussed here to
upgrade sustainable agricultural systems.
ACKNOWLEDGEMENTS
The authors acknowledge the support in part of this
study by the US-Egypt Project cycle 22 entitled ‘Setting
and assessing integrated pest management tactics
to optimize livestock and honey bee production’. This
article is derived from the Subject Data funded in part
by NAS and USAID. Any opinions, findings, conclusions,
or recommendations expressed in it are those of the authors alone, and do not necessarily reflect the views of USAID or NAS. We also wish to thank
Dr. Z.A. Handoo for editing an earlier version of the
manuscript.
FUNDING
This research was supported by In-House project No.
13050112 entitled “Pesticide alternatives against soilborne
pathogens and pests attacking economically
significant export crops”, and by the In-House project
No. E-120710 entitled “Effects of the climatic changes
and fertilization resources on prediction and expected
frequencies of the annual generations of the major insect
pests on cotton cultivations”.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (119)
1.
Abd-Elgawad M.M.M. 2024. Nanonematicides: production, mechanisms, efficacy, opportunities and challenges. Nematology 26 (5): 479–489. DOI:
https://doi.org/10.1163/156854....
2.
Abd-Elgawad M., El-Mougy N.S., El-Gamal N.G., Abdel-Kader M.M., Mohamed M. 2010. Protective treatments against soilborne pathogens in citrus orchards. Journal of Plant Protection Research 50 (4): 512–519. DOI:
https://doi.org/10.2478/v10045....
3.
Abdel-Halim K., Attia A. 2018. Toxicity of certain essential oils loaded on silica nanoparticles against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. Egypt. Journal of Plant Protection research 1 (1): 19–31. DOI:
https://www.researchgate.net/p....
4.
Abd-Elsalam K., Prasad R. 2018. Nanobiotechnology applications in plant protection. In a book series “Nanotechnology in the Life Sciences”. Springer International Publishing, Cham, Switzerland, 394 pp. DOI:
https://doi.org/10.1007/978-3-....
6.
Adel M., Atwa A., Hassan L., Salem N., Farghaly D., Ibrahim S. 2015. Biological Activity and field persistence of Pelargonium graveolens (Geraniales: Geraniaceae) loaded solid lipid nanoparticles (SLNs) on Phthorimaea operculella. International Journal of Scientific Research 4 (11): 514–520. DOI:
https://www.ijsr.net/archive/v....
7.
Adel M., Salem N., Abdel-Aziz N., Ibrahim S. 2019. Application of new nano pesticide Geranium oil loaded-solid lipid nanoparticles for control the black cutworm Agrotis ipsilon (Hub.) (Lepi. Noctuidae). EurAsian Journal of Bio-Sciences 13: 1453–1461. DOI:
https://www.proquest.com/schol....
8.
Adisa I.O., Pullagurala V.L.R., Peralta-Videa J.R. 2019. Different applica¬tions of nanomaterials and their impact on the environment. International Journal of Material Science and Engineering 5: 1–7. DOI: 10.14445/23948884/IJMSE-V5I1P101.
9.
Afzal A., Mukhtar T. 2024. Revolutionizing nematode management to achieve global food security goals – An overview. Heliyon. 10. DOI:
https://doi.org/10.1016/j.heli....
10.
Al-Harbi N.A., Al Attar N.M., Hikal D.M., Mohamed S.E., Arafat Abdel Hamed A.L., Ibrahim A.A., Abdein, M.A. 2021. Evaluation of insecticidal effects of plants essential oils extracted from basil, black seeds and lavender against Sitophilus oryzae. Plants 10 (5): 829. DOI:
https://doi.org/10.3390/plants....
11.
Anandhi S., Saminatha Y., Yasotha Y., Saravanan P., Rajanbabu V. 2020. Nano-pesticides in pest management. Journal of Entomology and Zoology Studies 8 (4): 685–690. DOI:
https://www.researchgate.net/p....
12.
Arthurs S., Lacey L., Behle R. 2006. Evaluation of spray-dried lignin-based formulations and adjuvants as solar protectants for the Granulovirus of the Codling Moth, Cydia pomonella (L). Journal of Invertebrate Pathology 93: 88–95. DOI: 10.1016/j.jip.2006.04.008.
13.
Attia R., Rizk S., Hussein M., Abdel-Fattah H., Khalil M.H., Ma'moun S. 2020. Effect of cinnamon oil encapsulated with silica nanoparticles on some biological and biochemical aspects of the rice moth, Corcyra cephalonica (Staint.) (Lepido: Pyralidae). Annals of Agricultural Sciences 65: 1–5. DOI: 10.1016/j.aoas.2020.05.003.
14.
Awashra M., Młynarz P. 2023. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Advances 5: 2674–2723. DOI: 10.1039/d2na00534d.
15.
Battu J.R., Somala K., Gummudala Y., Morthala S.R., Ramappa K., Gadde A., Negi N. 2023. Insect cell culture vis-à-vis insect pest control. Egyptian Journal of Biological Pest Control 33: 80. DOI:
https://doi.org/10.1186/s41938....
16.
Bayramzadeh N., Mehrkhou F., Pourmirza A., Mahmoudian M. 2019. Fumigant toxicity of two nano-capsulated essential oils with sublethal rate of phosphine against three stored product pests. Journal of Agricultural Science and Technology 21 (4): 857–872. DOI:
https://jast.modares.ac.ir/art....
17.
Behle W., Tamez-Guerra P., McGuire R. 2006. Evaluating conditions for producing spray-dried formulations of Anagrapha falcifera Nucleo-polyhedro viruses (AfMNPV). Biocontrol Science and Technology 16 (9): 941–952. DOI:
https://doi.org/10.1080/095831....
18.
Behle W., Popham R. 2012. Laboratory and field evaluations of the efficacy of a fast-killing baculovirus isolate from Spodoptera frugiperda. Journal of Invertebrate Pathology 109: 194–200. DOI: 10.1016/j.jip.2011.11.002.
19.
Benelli G., Pavela R., Zorzetto C., Sánchez-Mateo C., Santini G., Canale A., Maggi F. 2019. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomologia Generalis 39 (1): 9–18. DOI: 10.1127/entomologia/2019/0662.
20.
Bharani A.R., Karthick S., Namasivayam R., Sai Shankar S. 2014. Biocompatible chitosan nanoparticles incorporated pesticidal protein Beauvericin (Csnp-Bv) preparation for the improved pesticidal activity against major groundnut defoliator Spodoptera Litura (Fab.) (Lepidoptera; Noctuidae). International Journal of ChemTech Research 6 (12): 5007–5012. DOI:
https://www.researchgate.net/p....
21.
Campolo O., Cherif A., Ricupero M., Siscaro G., Grissa-Lebdi K., Russo A. 2017. Citrus peel essential oil nanoformulations to control the tomato borer, Tuta absoluta: Chemical properties and biological activity. Scientific Reports 7: 13036. DOI: 10.1038/s41598-017-13413-0.
22.
Campolo O., Giunti G., Russo A., Palmeri V., Zappalà L. 2018. Essential oils in stored product insect pest control. Journal of Food Quality 18 (1): 6906105. DOI:
https://doi.org/10.1155/2018/6....
23.
Campolo O., Giunti G., Laigle M., Michel T., Palmeri V. 2020. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Industrial Crops and Products 157: 112935. DOI:
https://doi.org/10.1016/j.indc....
24.
Cano-Sarabia M., Maspoch D. 2015. Nanoencapsulation. p. 1–16. In: “Encyclopedia of Nanotechnology” (B. Bhushan, ed.). Springer. Dordrecht, the Netherlands, 2868 pp. DOI:
https://doi.org/10.1007/978-94....
25.
Chandra H., Raj A.A., Namasivayam R., Bharani A. 2013. Improved pesticide activity of fungal metabolite from nomureae rileyi with chitosan nanoparticles. p. 387–390. In: Proceedings of “the International Conference on Advanced Nanomaterials and Emerging Engineering Technologies”. July 24-26, 2013, Chennai, India. DOI:
https://doi.org/10.1007/978-3-....
26.
Chariou P.L., Dogan A.B., Welsh A.G., Saidel G.M., Baskaran H., Steinmetz N.F. 2019. Soil mobility of synthetic and vi¬rus-based model nanopesticides. Nature Nanotechnology 14 (7): 712–718. DOI: 10.1038/s41565-019-0453-7.
27.
Chattopadhyay P., Banerjee G., Mukherjee S. 2017. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. Biotechnology 7 (1): 1–11. DOI: 10.1007/s13205-017-0717-6.
28.
Chenni M., Douniazad E., Neggaz S., Njara R.N., Fernandez X., Chemat F. 2020. Solvent free microwave extraction followed by encapsulation of O. basilicum L. essential oil for insecticide purpose. Journal of Stored Product Research 86: 101575. DOI: 10.1016/j.jspr.2020.101575.
29.
Chiriac A.P., Rusu A.G., Nita L.E., Chiriac V.M., Neamtu I., Sandu A. 2021. Polymeric carriers designed for encapsulation of essential oils with biological activity. Pharmaceutics 13: 631. DOI:
https://doi.org/10.3390/pharma....
30.
Christofoli M., Costaa E., Bicalhoc U., Cássia-Dominguesc V., Peixotob M., Alvesb S., Wagner L., Cazala C. 2015. Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Industrial Crops and Products 70: 301–308. DOI: 10.1016/j.indcrop.2015.03.025.
31.
EI Badawy M., Taktak N., Awad M., Elfiki S., Abou El-Ela N. 2016. Evaluation of released malathion and spinosad from chitosan/alginate/gelatin capsules against Culex pipiens larvae. Research and Reports in Tropical Medicine 7: 23–38. DOI: 10.2147/RRTM.S108881.
32.
Elbehery H.H., Ibrahim S.S. 2022. Cinnamon essential oil loaded β-cyclodextrin/gum Arabic nanoparticles affecting life table parameters of potato tuber moth, Phthorimaea operculella (Zeller). Biocatalysis and Agricultural Biotechnology 42: 102349. DOI:
https://doi.org/10.1016/j.bcab....
34.
Ferreira T., Haddi T., Corrêa R., Zapata B., Piau B., Souza N. 2019. Prolonged mosquitocidal activity of Siparuna guianensis essential oil encapsulated in chitosan nanoparticles. PLoS Neglected Tropical Diseases 13 (8): e0007624. DOI:
https://doi.org/10.1371/journa....
35.
Fukruksa C., Yimthin T., Suwannaroj M., Muangpat P., Tandhavanant S., Thanwisai A., Vitta A. 2017. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Parasites and Vectors 10: 440. DOI:
https://doi.org/10.1186/s13071....
36.
Gaire S., Scharf M.E., Gondhalekar A.D. 2019. Toxicity and neurophysiological impacts of plant essential oil components on bed bugs (Cimicidae: Hemiptera). Scientific Reports 9: 3961. DOI:
https://doi.org/10.1038/s41598....
37.
Gao S., Zhang K., Wei L., Wei G., Xiong W., Lu Y., Zhang Y., Gao A., Li B. 2020. Insecticidal activity of Artemisia vulgaris essential oil and transcriptome analysis of Tribolium castaneum in response to oil exposure. Frontiers in Genetics 11: 589. DOI: doi.org/10.3389/fgene.2020.00589.
38.
Giunti G., Campolo O., Laudani F., Zappalà L., Palmeri V. 2021. Bioactivity of essential oil-based nano-biopesticides toward Rhyzopertha dominica (Coleoptera: Bostrichidae). Industrial Crops and Products 162: 113257. DOI:
https://doi.org/10.1016/j.indc....
39.
Graily-Moradi F., Lajayer B. 2021. Nanoinsecticides: Preparation, application, and mode of action. p. 385–404. In: “Nanotechnology applications in health and environmental sciences, nanotechnology in the life sciences” (N. Saglam, F. Korkusuz, R. Prasad, eds.). Springer Nature. Cham, Switzerland, 234 pp. DOI:
https://doi.org/10.1007/978-3-....
40.
Gupta I., Singh R., Muthusamy S., Sharma M., Grewal K., Singh H.P., Batish D.R. 2023. Plant essential oils as biopesticides: Applications, mechanisms, innovations, and constraints. Plants 12: 2916. DOI:
https://doi.org/10.3390/plants....
41.
Gustafson H., Holt-Casper D., Grainger W., Ghandehari H. 2015. Nanoparticle uptake: the phagocyte problem. Nanotoday 10 (4): 487–510. DOI: doi.org/10.1016/j.nantod.2015.06.006.
42.
Hofte H., Whiteley R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews 53 (2): 242–255. DOI: 10.1128/mr.53.2.242-255.1989.
43.
Huang Y., Liao M., Yang Q., Shi S., Xiao J., Cao H. 2020. Knockdown of NADPH-cytochrome P450 reductase and CYP6MS1 increases the susceptibility of Sitophilus zeamais to terpinen-4-ol. Pesticide Biochemistry and Physiology 162: 15–22. DOI: doi.org/10.1016/j.pestbp.2019.07.008.
44.
Ibrahim S.S. 2022. Polyethylene glycol nanocapsules containing Syzygium aromaticum essential oil for the management of lesser grain borer, Rhyzopertha dominica. Food Biophysics 17 (4): 523–534. DOI:
https://doi.org/10.1007/s11483....
45.
Ikawati S., Himawan T., Abadi A.L., Tarno H. 2020. Thermostability, photostability, and toxicity of clove oil nanoparticles against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Biodiversitas Journal of Biological Diversity 21 (10): 4764–4771. DOI:
https://doi.org/10.13057/biodi....
46.
Jankowska M., Rogalska J., Wyszkowska J., Stankiewicz M. 2017. Molecular targets for components of essential oils in the insect nervous system–a review. Molecules 23 (1): 34. DOI: 10.3390/molecules23010034.
47.
Jasrotia P., Nagpal M., Mishra C., Sharma A., Kumar S., Kamble U., Bhardwaj A., Kashyap P., Kumar S., Singh P. 2022. Nanomaterials for postharvest management of insect pests: Current state and future perspectives. Frontiers in Nanotechnology 3: 811056. DOI: 10.3389/fnano.2021.811056.
48.
Jasser E., Yeguerman C., tefanazzi N., Gomez R., Murray A., Ferrero A., Werdin-Gonzalez ́ J. 2020. Ecofriendly approach for the control of a common insect pest in the food industry, combining polymeric nanoparticles and post-application temperatures. Journal of Agricultural and Food Chemistry 68 (21): 5951–5958. DOI:
https://doi.org/10.1021/acs.ja....
49.
Jhones de-Oliveira L., Fernandes F., Alejandra B., Polanczyk R. 2021. Encapsulation strategies for Bacillus thuringiensis: from now to the future. Journal of Agriculture and Food Chemistry 69 (16): 4564–4577. DOI: 10.1021/acs.jafc.0c07118.
50.
Kala S., Sogan N., Naik S., Agarwal A. Kumar J. 2020. Impregnation of pectin-cedarwood essential oil nanocapsules onto mini cotton bag improves larvicidal performances. Scientific Reports 10: 14107. DOI:
https://doi.org/10.1038/s41598....
51.
Kamsuk K., Choochote W., Chaithong U., Jitpakdi A., Tippawangkosol P., Riyong D., Pitasawat B. 2007. Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field applications. Parasitology Research 100: 339–345. DOI:
https://doi.org/10.1007/s00436....
52.
Khanahmadi M., Pakravan P., Azandaryani A., Negahban M., Ghamari E. 2017. Fumigant toxicity of Artemisia haussknechtii essential oil and its nano-encapsulated form. Journal of Entomology and Zoology Studies 5 (2): 1776–1783. DOI:
https://api.semanticscholar.or....
53.
Khoobde M., Ahsaei M., Franzaneh M. 2017. Insecticidal activity of polycaprolactone nanocapsules loaded with Rosmarinus officinalis essential oil in Tribolium castaneum. Entomological Research 47 (3): 175–184. DOI:
https://doi.org/10.1111/1748-5....
54.
Kostyukovsky M., Rafaeli, A., Gileadi, C., Demchenko N., Shaaya E. 2002. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Management Science 58 (11): 1101–1106. DOI: 10.1002/ps.548.
55.
Kotliarevski L., Cohen R., Jayashree R., Wu S., Karthik A., Amar-Feldbaum R., Noga Y., Einat Z., Eduard B., Shapiro-Ilan D., Glazer I., Dana M., Mechrez G. 2022. Individual coating of entomopathogenic nematodes with Titania (TiO2) nanoparticles based on oil-in-water pickering emulsion: A new formulation for biopesticides. Journal of Agricultural and Food Chemistry 70 (42): 13518–13527. DOI: 10.1021/acs.jafc.2c04424.
56.
Kucharska K., Pezowicz E., Tumialis D., M. Barkowska M. 2011. Effect of silver nanoparticles on the mortality and pathogenicity of entomopathogenic nematodes. Ecological Chemistry and Engineering 18 (8): 1065–1070. DOI:
https://open.icm.edu.pl/handle....
57.
Kumar P., Mishra S., Malik A., Satya S. 2011. Insecticidal properties of Mentha species: A review. Industrial Crops and Products 34 (1): 802–817. DOI:
https://doi.org/10.1016/j.indc....
58.
Kumar S., Nehra M., Dilbaghi N., Marraza G., Hassan A., Kim K. 2019. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release 294: 131–153. DOI: 10.1016/j.jconrel.2018.12.012.
59.
Li Z., Chen J., Liu F., Liu A., Wang Q., Wen L. 2007. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Management Science 63: 241–246. DOI: 10.1002/ps.1301.
60.
Liao M., Xiao J.J., Zhou L.J. 2016. Insecticidal activity of Melaleuca alternifolia essential oil and RNA-Seq analysis of Sitophilus zeamais transcriptome in response to oil fumigation. PLoS ONE 11: e0167748. DOI:
https://doi.org/10.1371/journa....
61.
Lima L., Ferreira-Sa, P., Garcia M., Pereira V., Carvalho J., Rocha L., Fernandes C., Souto R., Araujo R., Botas G. 2021. Nano-emulsions of the essential oil of Baccharis reticularia and its constituents as eco-friendly repellents against Tribolium castaneum. Industrial Crops and Products 162: 113282. DOI:
https://doi.org/10.1016/j.indc....
62.
Lopes A., Monteiro M., Araújo A.R., Rodrigues A., Castanheira E., Pereira D., Olim P., Fortes A., Gonçalves M. 2020. Cytotoxic plant extracts towards insect cells: Bioactivity and nanoencapsulation studies for application as biopesticides. Molecules 25: 5855. DOI:
https://doi.org/10.3390/molecu....
63.
Loza-Mejía M., Salazar J., Sánchez-Tejeda J. 2018. In silico studies on compounds derived from calceolaria: Phenylethanoid glycosides as potential multitarget inhibitors for the development of pesticides. Biomolecules 8: 121. DOI:
https://doi.org/10.3390/biom80....
64.
Machado S., Pereira R., Sousa R. 2023. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? Science of the Total Environment. 896: 166401. DOI:
https://doi.org/10.1016/j.scit....
65.
Maes C., Bouquillon S., Fauconnier M.L. 2019. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules 24: 2539. DOI:
https://doi.org/10.3390/molecu....
66.
Mahdavi V., Rafiee-Dastjerdi H., Asadi A., Razmjou J., Achachlouei B., Kamita S. 2017. Effective management of the Phthorimaea operculella (Zeller) using PVA nanofibers loaded with Cinnamomum zeylanicum essential oil. American Journal of Potato 94: 647–657. DOI:
https://doi.org/10.1007/s12230....
67.
Marella S., Kumar N., Tollamadugu P. 2021. Nanotechnology-based innovative technologies for high agricultural productivity: Opportunities, challenges, and future perspectives. Recent Developments in Applied Microbiology and Biochemistry 2: 211–220. DOI:
https://doi.org/10.1016/B978-0....
68.
Martín A., Varona S., Navarrete A., Cocero M. 2010. Encapsulation and co-precipitation process with supercritical fluids: applications with essential oil. The Open Chemical Engineering Journal 4: 31–41. DOI: 10.2174/1874123101004010031.
69.
McGuire R., Tamez-Guerra P., Behle W., Streett A. 2001. Comparative field stability of selected entomopathogenic virus formulations. Journal of Economic Entomology 94 (5): 1037–1044. DOI: 10.1603/0022-0493-94.5.1037.
70.
Mishra S., Kumar P., Anushree M. 2013. Preparation, characterization, and insecticidal activity evaluation of three different formulations of Beauveria bassiana against Musca domestica. Parasitology Research 112: 3485–3495. DOI: 10.1007/s00436-013-3529-6.
71.
Moraga E.Q. 2020. Entomopathogenic fungi as endophytes: Their broader contribution to IPM and crop production. Biocontrol Science and Technology 30 (9): 864–877. DOI: 10.1080/09583157.2020.1771279.
72.
Murthy K., Vineela V., Devi P.S.V. 2014. Generation of Nanoparticles from technical powder of the insecticidal bacterium Bacillus thuringiensis Var. Kurstaki for improving efficacy. International Journal of Biomedical and Nanotechnology 3 (3): 236–250. DOI:
https://doi.org/10.1504/IJBNN.....
73.
Nair R., Varghese S.H., Nair B.G., Maekawa T., Yoshida Y., Kumar D.S. 2010. Nanoparticulate material delivery to plants. Plant science 179 (3): 154–163. DOI: 10.1016/j.plantsci.2010.04.012.
74.
Nuruzzaman D., Rahman M., Liu Y., Naidu R. 2016. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Journal of Agricultural and Food Chemistry 64 (7): 1447–1483. DOI: 10.1021/acs.jafc.5b05214.
75.
Ocampo A., Mac-Kevin E., Nellas R. 2020. The interaction and mechanism of monoterpenes with tyramine receptor (SoTyrR) of rice weevil (Sitophilus oryzae). SN Applied Sciences 2: 1592. DOI: https ://doi.org/10.1007/s4245 2-020-03395-6.
76.
Ohta H., Ozoe Y. 2014. Molecular signalling, pharmacology, and physiology of octopamine and tyramine receptors as potential insect pest control targets. Advances in Insect Physiology 46: 73-166. DOI:10.1016/B978-0-12-417010-0.00002-1.
77.
Pan X., Wang Y., Chen Z., Pan D., Cheng Y., Liu Z. 2013. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Applied Material and Interfaces 5 (3): 1137–1142. DOI: 10.1021/am302910q.
78.
Pavela R. 2018. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environmental Science and Pollution Research International 25 (11): 10904–10910. DOI: 10.1007/s11356-018-1398-3.
80.
Pisal M., Barbade P., Dudhal S. 2020. Nanocapsule. International Journal of Pharmaceutical Sciences Review and Research 10: 53–62. [Available at: www.globalresearchonline.net].
81.
Qasim M., Islam S., Islam W., Noman A., Khan A., Hafeez M., Hussain D., Das K., Bamisisle S., Akutse K. 2020. Characterization of mycotoxins from entomopathogenic fungi (Cordyceps fumosorosea) and their toxic effects to the development of asian citrus psyllid reared on healthy and diseased citrus plants. Toxicon 188: 39–47. DOI:
https://doi.org/10.1016/j.toxi....
82.
Ramírez-Lepe M., Aguilar O., Ramírez-Suero M., Escudero B. 2003. Protection of the spore-toxin complex of Bacillus thurigiensis serovar israelensis from ultraviolet irradiation with aluminum-cmc encapsulation and photo protectors. Southwestern Entomology 28 (2): 137–143. DOI:
https://www.researchgate.net/p....
83.
Rehman A., Jafari S.M., Tong Q., Karim A., Mahdi A., Iqbal M., Aadil R., Ali A., Manzoor M. 2020. Role of peppermint oil in improving the oxidative stability and antioxidant capacity of borage seed oil-loaded nanoemulsions fabricated by modified starch. International Journal of Biological Macromolecules 153: 697–707. DOI:
https://doi.org/10.1016/j.ijbi....
84.
Sabbour M. 2019. Efficacy of natural oils against the biological activity on Callosobruchus maculatus and Callosobruchus chinensis (Coleoptera: Tenebrionidae). Bulletin of National Research Centre 43: 206. DOI:
https://doi.org/10.1186/s42269....
85.
Sabbour M. , Abd El-Aziz S. 2016. Role of three essential oils and their nano against Ephestia cautella (Lepidoptera-Pyralidae) under laboratory and store conditions. International Journal of ChemTech Research 9 (10): 194–200. DOI:
https://www.researchgate.net/p....
86.
Sabry H., Ragaei M. 2018. Nanotechnology and their applications in insect’s pest control. p. 1–28. In: “Nanobiotechnology Applications in Plant Protection, in a book series: Nanotechnology in the Life Sciences” (K. Abd-Elsalam, R. Prasad, eds.). Springer International Publishing, Cham, Switzerland, 394 pp. DOI: 10.1007/978-3-030-13296-5.
87.
Sarri K., Mourouzidou S., Ntalli N., Monokrousos N. 2024. Recent advances and developments in the nematicidal activity of essential oils and their components against root-knot nematodes. Agronomy 14: 213. DOI:
https://doi.org/10.3390/agrono....
88.
Sciortino M., Scurria A., Lino C., Pagliaro M., D’Agostino F., Tortorici S., Ricupero M., Biondi A., Zappala L., Ciriminna R. 2021. Silica-microencapsulated orange oil for sustainable pest control. Advanced Sustainable Systems 5: 2000280.
https://doi.org/10.1002/adsu.2....
89.
Sekhon B.S. 2014. Nanotechnology in agri-food production: an overview. Nanotechnology Science and Application 7 (2): 31–53. DOI: 10.2147/NSA.S39406.
90.
Sharma A., Sood K., Kaur J., Khatri M. 2019. Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatalysis and Agricultural Biotechnology 18: 101079. DOI:
https://doi.org/10.1016/j.bcab....
91.
Sharma L., Nitin B., Vishnu D., Quiroz-Figueroa F., Kumar S., Marques G. 2021a. A review: advances in entomopathogen isolation: a case of bacteria and fungi. Microorganisms 9 (1): 16. DOI:
https://dx.doi.org/10.3390/mic....
92.
Sharma S., Kumari S., Lidong C., Bindra P., Kaur K., Chandel M., Nikhil K., Huang Q., Shanmugam V. 2021b. Porous nanomaterials: Main vein of agricultural nanotechnology. Progress in Material Science 121: 100812. DOI:10.1016/J.PMATSCI.2021.100812.
93.
Shen M., Liu S., Jiang C., Zhang T., Chen W. 2023. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco-Environment and Health 2 (3): 161–175. DOI: 10.1016/j.eehl.2023.07.005.
94.
Shishir M., Xie L., Sun C., Chen W. 2018. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science and Technology 78: 34-60. DOI:
https://doi.org/10.1016/j.tifs....
95.
Sierra I., Latorre-Estivalis J., Traverso L., Gonzalez P., Aptekmann A., Nadra A., Masuh H, Ons S. 2021. Transcriptomic analysis and molecular docking reveal genes involved in the response of Aedes aegypti larvae to an essential oil extracted from Eucalyptus. PLOS Neglected Tropical Diseases 15: e0009587. DOI: doi.org/10.1371/journal.pntd.009587.
96.
Solomon B., Sahle F., Gebre-Mariam T., Asres K., Neubert R. 2012. Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies. European Journal of Pharmaceutics and Biopharmaceutics 80 (1): 61–66. DOI: 10.1016/j.ejpb.2011.08.003.
97.
Sparks T., Dripps J., Watson G., Paroonagian D. 2012. Resistance and cross-resistance to the spinosad – A review and analysis. Pesticide Biochemistry and Physiology 102 (1): 1–10. DOI:
https://doi.org/10.1016/j.pest....
98.
Subhadarsini Pradhan S., Basana Gowda G., Adak T., Guru-Pirasanna-Pandi G., Patil N., Annamalai M., Chandra Rath P. 2022. Pesticides occurrence in water sources and decontamination techniques. p. 1–27. In: “Pesticides - Updates on toxicity, efficacy and risk assessment” (M.L. Larramendy, S. Solonesk, eds.). IntechOpen, London, England, 326 pp. DOI: 10.5772/intechopen.103812.
99.
Sun C., Yu M., Zeng Z., Francis F., Cui H., Verheggen F. 2020. Biocidal activity of polylactic acid-based nano-formulated abamectin on Acyrthosiphon pisum (Hemiptera: Aphididae) and the aphid predator Adalia bipunctata (Coleoptera: Coccinellidae). PLoS ONE 15 (2): e0228817. DOI: 10.1371/journal.pone.0228817.
100.
Taha E., Abo-Shady N. 2016. Effect of silver nanoparticles on the mortality pathogenicity and reproductivity of entomopathogenic nematodes. International Journal of Zoological Research 12 (3–4): 47–50. DOI: 10.3923/ijzr.2016.47.50.
101.
Tamez-Guerra P., McGuire M., Behle R., Shasha B., Galán-Wong L. 2000. Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. Journal of Economic Entomology 93 (2): 219–225. DOI: 10.1603/0022-0493-93.2.219.
102.
Tia V.E., Gueu S., Cissé M., Tuo Y., Gnago A.J., Konan E. 2021. Bio-insecticidal effects of essential oil nano-emulsion of Lippia multiflora Mold. on major cabbage pests. Journal of Plant Protection Research 61: 103–109. DOI:
https://doi.org/10.24425/jppr.....
103.
Toledo P., Ferreira T., Bastos I., Rezende S., Jumbo L., Didonet J., Andrade B., Melo T., Smagghe G., Oliveira E. 2019. Essential oil from Negramina (Siparuna guianensis) plants controls aphids without impairing survival and predatory abilities of non-target ladybeetles. Environmental Pollution 255 (1): 113–153. DOI:
https://doi.org/10.1016/j.enpo....
104.
Tran B., Vachon V., Schwartz L., Laprade R. 2021. Differential effects of pH on the pore-forming properties of Bacillus thuringiensis insecticidal crystal toxins. Applied and Environmental Microbiology 67 (10): 4488–4494. DOI: 10.1128/AEM.67.10.4488-4494.2001.
105.
Tripathi A., Upadhyay S., Bhuiyan M., Bhattacharya P. 2009. A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy 1 (5): 52–63. DOI:
http://www.academicjournals.or....
106.
Ureña-Saborío H., Madrigal-Carballo S., Sandoval J., Vega-Baudrit R., Rodríguez-Morales R. 2017. Encapsulation of bacterial metabolic infiltrates isolated from different bacillus strains in chitosan nanoparticles as potential green chemistry-based biocontrol agents against radopholus similis. Journal of Renewable Materials 5 (3–4): 290–302. DOI: 10.7569/JRM.2017.634119.
107.
Vidallon P., Teo A. 2020. Recent developments in biomolecule-based nanoencapsulation systems for antimicrobial delivery and biofilm disruption. Chemical Communications 56 (90): 13907–13917. DOI: 10.1039/D0CC05880G.
108.
Wang A., Yan W., Sun C., Wang C., Bo Cui., Zhao X., Zeng Z., Junwei Y., Yang D., Guoqiang L., Cu H. 2018. Fabrication characterization and biological activity of avermectin nano-delivery systems with different particle sizes. Nanoscale Research Letters 13: 2. DOI:
https://doi.org/10.1186/s11671....
109.
Wang J., Qunfang W., Fei Y., Qiongbo H. 2020. Interactions of destruxin a with silkworms’ arginine trna synthetase and lamin-c proteins. Toxins 12: 137. DOI: 10.3390/toxins12020137.
110.
Werdin-Gonzalez O., Stefanazzi N., Murray A., Ferrero A., Fernandez B. 2014. Novel nanoinsecticides based on essential oils ́ to control the German cockroach. Journal of Pest Science 88: 393–404. DOI:
https://doi.org/10.1007/s10340....
111.
Wilson K., Grzywacz D., Curcic I., Scoates F., Harper K., Rice A. 2020. A novel formulation technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation. Scientific Reports 10: 13301. DOI:
https://doi.org/10.1038/s41598....
112.
Wu J., Bo Yang Y., Jing Xu., Andrew G., Cuthbertson S., Shaukat A. 2021. Characterization and toxicity of crude toxins produced by Cordycep fumosorosea against Bemisia tabaci (Gennadius) and Aphis craccivora (Koch). Toxins 13 (3): 220–233. DOI:
https://doi.org/10.3390/toxins....
113.
Xu X., Bai B., Wang H., Suo Y. 2017. A near-infrared and temperature-responsive pesticide release platform through core-shell polydopamine@PNIPAm nanocomposites. ACS Applied Material Interfaces 9 (7): 6424–6432. DOI:
https://doi.org/10.1021/acsami....
114.
Yang F., Li X., Zhu F., Lei L. 2009. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry 57 (21): 10156–10162. DOI:
https://doi.org/10.1021/jf9023....
115.
Yeguermana C., Jessera E., Massirisc M., Delrieuxc C., Murrayd A., Werdin González J. 2020. Insecticidal application of essential oils loaded polymeric nanoparticles to control German cockroach: Design, characterization and lethal/sub-lethal effect. Ecotoxicology and Environmental Safety 189: 110087. DOI:
https://doi.org/10.1016/j.ecoe....
116.
Yeom H., Jung C., Kang J., Kim J., Lee J., Kim D., Kim H., Park P., Kang K.., Park I. 2015. Insecticidal and acetylcholine esterase inhibition activity of Asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica). Journal of Agricultural and Food Chemistry 63 (8): 2241–2248. DOI: 10.1021/jf505927n.
117.
Yousef H., Fahmy H., Arafa F. 2023. Nanotechnology in pest management: advantages, applications, and challenges. International Journal of Topical Insect Science 43: 1387–1399. DOI:
https://doi.org/10.1007/s42690....
118.
Yu M., Yao J., Liang J., Zeng Z., Cui B., Zhao X. 2017. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Advances 7: 11271–11280. DOI: 10.1039/C6RA27345A.
119.
Ziaee M., Moharramipour S., Mohsenifar A. 2014. MA-Chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. Journal of Pest Science 87: 691–699. DOI: 10.1007/s10340-014-0590-6.