ORIGINAL ARTICLE
 
HIGHLIGHTS
  • There is seasonality in the influence of the rhizospheric soil on the germination and initial development of seedlings;
  • The distance of the rhizospheric soil to plant donor tiller base is critical for the germination and seedling development;
  • The position of the rhizospheric soil and the season can influence the number of abnormal seedlings and dormant wheat seeds, as well as the size of the seedlings.
KEYWORDS
TOPICS
ABSTRACT
EExotic plants, such as Eragrostis plana in southern Brazil, may cause significant problems in agriculture. This study aimed to elucidate the influence of E. plana rhizosphere soil on wheat germination and initial development. Bioassays with soil sampled from an infested agroecosystem were carried out using wheat as the target species. A factorial design was used, crossing soil from the horizontal and vertical distances from the E. plana tiller base and considering seasons as a blocking factor. The interaction between season and vertical and horizontal soil positions influenced normal wheat seed germination, with the lowest values (69%) observed in the winter bottom and intermediate soil positions. The highest abnormal seedling percentage (17.6%) was recorded in the summer middle vertical soil position. Dormant wheat seeds were higher (7%) in the spring bottom and distal soil posi- tions. The season was the most important factor for germination, but hypocotyl, radicle, and total wheat seedling length also varied according to soil position. Shorter hypocotyls and seedlings were registered in the summer soil surface, while shorter radicles were ob- served in the proximal horizontal soil position in the same season. This variable response of wheat germination and seedling development to the infested soil demonstrated E. plana seasonality. The influence also varied according to the distance from the plant tiller base. These findings may be used to improve E. plana management in infested fields and to un- derstand the mechanism of action of its allelochemicals in future research.
RESPONSIBLE EDITOR
Natasza Borodynko-Filas
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (25)
1.
Bittencourt H. v. H., Trezzi M.M., Bonome L.T. da S., Teixeira S.D., Bittencourt T.B., Vargas A.G. de. 2018a. Decomposition of both Eragrostis plana biomass and soil influences the phytotoxicity and chemical characteristics of extracts. Científica 46 (2): 116. DOI: https://doi.org/10.15361/1984-....
 
2.
Bittencourt H. v. H., Trezzi M.M., Teixeira S.D., Bonome L. da S., de Vargas A.G., Souza Filho A. da S., Oldoni T.C. 2018b. Chemical ecology of Eragrostis plana helps understanding of the species’ invasiveness in an agroecosystem community. Crop and Pasture Science 69 (10): 1050–1060. DOI: https://doi.org/10.1071/CP1833....
 
3.
Bittencourt H. v H., Bonome L.T.S., Trezzi M.M., Bitencourt T., Pagnoncelli F.B., Siqueira D.J. 2020. Cultivated species sensibility to aqueous extract of Eragrostis plana with high total phenolic content. Agrarian 13 (50): 448–459. DOI: https://doi.org/10.30612/agrar....
 
4.
Bittencourt H.V.H., Bonome L.T.S., Trezzi M.M., Vidal R.A., Lana M.A. 2017. Seed germination ecology of Eragrostis plana, an invasive weed of South American pasture lands. South African Journal of Botany 109: 246–252. DOI: https://doi.org/10.1016/j.sajb....
 
5.
Blum U. 2011. Plant-Plant Allelopathic Interactions: Phenolic Acids, Cover Crops and Weed Emergence. Springer, Dordrecht, 200 pp.
 
6.
Botha C.E.J. 1992. Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta 187: 348–358.
 
7.
Buffon E.A.M., Binda A.L. 2013. Eventos de estiagem no município de Abelardo Luz (SC) no período de 1960 a 1999. Revista de Geografia 30 (2): 32–50.
 
8.
Callaway R.M., Ridenour W.M. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment 2 (8): 436–443. DOI: https://doi.org/10.1890/1540-9....
 
9.
Chen L., Li J., Zhu Y., Guo L., Ji R., Miao Y., Guo L., Du H., Liu D. 2022. Caffeic acid, an allelochemical in Artemisia argyi, inhibits weed growth via suppression of mitogenactivated protein kinase signaling pathway and the biosynthesis of gibberellin and phytoalexin. Frontiers in Plant Science: 12. DOI: https://doi.org/10.3389/fpls.2....
 
10.
Dalling J.W., Davis A.S., Schutte B.J., Elizabeth Arnold A. 2011. Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. Journal of Ecology 99 (1): 89–95. DOI: https://doi.org/10.1111/j.1365....
 
11.
Embrapa. 2004. Solos do estado de Santa Catarina. p. 721. In: “Boletim de Pesquisa e Desenvolvimento”. Embrapa Solos, Rio de Janeiro.
 
12.
Eriksson O., Ehrlén J. 2008. Seedling recruitment and population ecology. p. 239–254. In: “Seedling Ecology and Evolution” (M.A. Leck, V.T. Parker, R.L. Simpson, eds.). Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017//CBO97....
 
13.
Ferreira N.R., Medeiros R.B., Soares G.L.G. 2008. Potencial alelopático do capim-annoni-2 (Eragrostis plana Nees) na germinação de sementes de gramíneas perenes estivais. Revista Brasileira de Sementes 30 (2): 43–50.
 
14.
Garcia É.N. 2009. O banco de sementes do solo nos Campos Sulinos. p. 78–87. In: “Campos Sulinos: Conservação e uso Sustentável da Biodiversidade” (V.D.P. Pillar, S.C. Müller, Z.M. de S. Castilhos, A.V.Á. Jacques, eds.). Ministério do Meio Ambiente – Brasil, Brasília.
 
15.
Gniazdowska A., Bogatek R. 2005. Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiologiae Plantarum 27 (3): 395–407. DOI: https://doi.org/10.1007/s11738....
 
16.
Levitt J., Lovett J.V., Garlick P.R. 1984. Datura stramonium allelochemicals: longevity in soil, and ultrastructural effects on root tip cells of Helianthus annuus L. New Phytologist 97 (2): 213–218. DOI: https://doi.org/10.1111/j.1469....
 
17.
Lyu S.-W., Blum U., Gerig T.M., O’Brien T.E. 1990. Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. Journal of Chemical Ecology 16 (8): 2559–2567. DOI: https://doi.org/10.1007/BF0101....
 
18.
Medeiros R.B. de, Focht T. 2007. Invasão, prevenção, controle e utilização do capim-annoni-2 (Eragrostis plana Nees) no Rio Grande do Sul, Brasil. Pesquisa Agropecuária Gaúcha 13 (1–2): 105–114.
 
19.
Omezzine F., Bouaziz M., Simmonds M.S.J., Haouala R. 2014. Variation in chemical composition and allelopathic potential of mixoploid Trigonella foenum-graecum L. with developmental stages. Food Chemistry 148: 188–195. DOI: https://doi.org/10.1016/j.food....
 
20.
Pimentel D., Zuniga R., Morrison D. 2005. Update on the environmental and economic costs associated with alieninvasive species in the United States. Ecological Economics 52 (3): 273–288. DOI: https://doi.org/10.1016/j.ecol....
 
21.
Quattrocchi U. 2012. CRC World Dictionary of Medicinal and Poisonous Plants. CRC Press, Boca Raton, 4017 pp.
 
22.
Scheffer-Basso S.M., Cecchin K., Favaretto A. 2016. Dynamic of dominance, growth and bromatology of Eragrostis plana Nees in secondary vegetation area. Revista Ciencia Agronomica 47 (3): 582–588. DOI: https://doi.org/10.5935/1806-6....
 
23.
Scheffer-Basso S.M., Fiorentin F.J.R., Favaretto A. 2019. Influence of phenology and post-harvest processing of vegetal material on the allelopathy of annoni grass (Eragrostis plana) extracts. Planta Daninha 37. DOI: https://doi.org/10.1590/s0100-...
 
24.
Singh A., Singh D., Singh N.B. 2009. Allelochemical stress produced by aqueous leachate of Nicotiana plumbaginifolia Viv. Plant Growth Regulation 58 (2): 163–171. DOI: https://doi.org/10.1007/s10725....
 
25.
Zimdahl R.L. 2018. Allelopathy. p. 253–270. In: “Fundamentals of Weed Science”. 5th ed. Elsevier, Oxford. DOI: https://doi.org/10.1016/B978-0....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top