Fusarium sporotrichioides Sherb. Toxins evaluated in cereal grain with Trichoderma harzianum
More details
Hide details
Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań, Poland
Department of Chemistry, University of Life Science in Poznań, Wojska Polskiego 75, Poznań, Poland
Halina Wiśniewska
Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań, Poland
Journal of Plant Protection Research 2011;51(2):134–139
Fusarium head blight is one of the most severe diseases of small grain cereals and is caused by several toxigenic Fusarium species. Yield losses and mycotoxin accumulation in grain are caused by the disease. F. sporotrichioides and F. poae produce type A trichothecenes. Saprophyte fungal antagonists, especially Trichoderma harzianum , are effective biocontrol agents against several fungal soil-borne plant pathogens. These fungal antagonists can reduce the production of Fusarium spp. mycotoxins in some crop plants. The aim of this study was to examine the influence of T. harzianum AN4 on the production of type A trichothecenes by F. sporotrichioides in cereals. The accumulation of six trichothecene mycotoxins (scirpentriol, i.e. STO, T - 2 tetraol, T - 2 triol, HT - 2 toxin i . e ., HT - 2, T -2 toxin i.e ., T - 2, diacetoxyscirpenol, i.e. , DAS) was reduced on average, by over 89% in bioassays of F. sporotrichioides and Trichoderma isolate AN4 on a liquid medium and on solid substrates (seeds of naked and husked oats and wheat). The reduction in our experiments de - pended on fungal isolate and substrate. From the three isolates of F. sporotrichioides used in the experiments, the highest accumulation of all the metabolites after 21 days by F. sporotrichioides in nearly all substrates, was recorded for strain ZFR 159. On the liquid medium inoculated with F. sporotrichioides ZFR 159, the amount of type A trichothecenes was the lowest (STO, T - 2 tetraol, and T - 2 triol not de - tected, HT - 2 toxin 0.02 ppm, DAS 0.10 ppm, T2 toxin 0.99 ppm). The highest total concentration of these toxins was produced by this isolate in husked oat cv. German (180.16 ppm), but in naked oat cv . Akt the toxin concentration was low (27.62 ppm). Trichothecene accumulation by T. harzianum AN4 was reduced the most in oat cv. Akt (98.48%) in the liquid medium (98.22%), while the lowest reduction was in oat cv. German (48.77%). The non-toxigenic T. harzianum AN4 isolate proved to be a useful biocontrol agent against the toxigenic F. sporotrichioides in cereals, significantly reducing the production of six type A trichothecenes. This is the first report on effective biocontrol of F. sporotrichioides in cereals by T. harzianum
The authors have declared that no conflict of interests exist.
Bailey B.A., Lumsden R.D. 1999. Direct effects of Trichodermaand Gliocladium on plant growth and resistance to pathogens. p. 185–204. In: “Trichoderma and Gliocladium” (G. Harman, C.Kubicek, eds.). Taylor and Francis Inc. London, UK.
Beeton S., Bull A.T. 1989. Biotransformation and detoxification of T-2 Toxin by soil and freshwater bacteria. Appl. Environ. Microbiol. 55 (1): 190–197.
Buśko M., Chełkowski J., Popiel D., Perkowski J. 2008. Solid substrate bioassay to evaluate impact of Trichoderma on trichothecenes mycotoxin production by Fusarium species. J. Sci. Food Agric. 88: 536–541.
Buśko M., Wiśniewska H., 2005. Evaluation of spring wheat resistance to Fusarium seedling blight and head blight. Biol. Bratislava 60: 287–293.
Brown D.W., McCormick S.P., Alexander N.J., Proctor R.H., Desjardines A.E. 2001. A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet. Biol. 32: 121–133.
Chaverri P., Castlebury L.A., Samuels G.J., Geiser D.M. 2003. Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol. Phylogenet. Evol.27: 302–313.
Cooney J.M., Lauren D.R., Menna M.E. 2001. Impact of competi tive fungi on trichothecene production by Fusarium graminearum. J. Agric. Food Chem. 49: 522–526.
Edwards S.G. 2004. Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol. Lett. 153: 29–35.
Elad Y., Chet I., Henis Y. 1982. Degradation of plant pathogenic fungi by Trichoderma harzianum. Can. J. Microbiol. 28: 719–725.
Eged S. 2002. Changes in the content of fusaric acid during Fusarium oxysporum ontogenesis. Biol. Bratislava 57: 725–728.
Ganassi Moretti A., Stornelli C., Fratello B., Bonvicini Paglia A.M., Logrieco A., Sabatini M.A. 2001. Effect of Fusarium, Paecilomyces and Trichoderma formulations against aphid Schizaphis graminum. Mycopathology 3: 131–138.
Green H., Larsen J., Olsson P.A., Jensen D.F. 1999. Suppression of the biocontrol agent Trichoderma harzianum of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Appl. Environ. Microbiol. 65 (4): 1428–1434.
Hoefnagels M.H., Linderman R.G. 1999. Biological suppression of seedborne Fusarium spp. During cold stratification of Douglas fir seeds. Plant Dis. 83: 845–852.
Karlovski P. 1999. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat. Toxins. 7: 1–13.
Kiecana I., Perkowski J. 1998. Zasiedlenie ziarna owsa (Avena sativa L.) przez toksynotwórcze grzyby Fusarium poae(Peck.) Wr. i Fusarium sporotrichioides Zesz. Nauk. AR Krak. 333: 881–884.
Kiessling K.H., Pettersson H., Sandholm K., Olsen M. 1984. Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl. Environ. Microbiol. 47 (5): 1070–1073.
Kucuk C. 2003. Isolation of Trichoderma spp. And determination of their antifungal, biochemical and physiological features. Tur. J. Biol. 27: 247–253.
Kucuk C., Kivanc M. 2004. In vitro Antifungal Activity of Strains of Trichoderma.Tur. J. Biol. 28: 111–115.
Kulik T., Fordońsk G., Pszczółkowska A., Płodzień K., Łapiński M. 2004. Development of PCR assay based on ITS2 r DNA polymorphism for the detection and differentiation of Fusaruim sporotrichioides. FEMS Microbiol. Lett. 239: 181–186.
Loogrieco A., Visconti A. 2004. (eds.). On Overview on Toxigenic Fungi and Mycotoxins in Europe. Kluwer Academic Publisher, The Niderlands: 1–251.
Mao W., Lumsden R.D., Lewis J.A., Hebbar P.K. 1998. Seed treatment using pre-infiltration and biocontrol agents to reduce damping-off corm caused by species of Pythium and Fusarium. Plant Dis. 82: 294–299.
Mateo J.J., Mateo R.M., Jimenez M. 2002. Accumulation of type A trichothecenes in maize, wheat and rice by Fusarium sporotrichioides isolates under diverse culture conditions. Int. J. Food Microbiol. 72: 115–123.
Mielniczuk E., Kiecana I., Perkowski J. 2004. Susceptibility of oat genotypes to Fusarium crookwelense Burgess, Nelson and Toussoun infection and mycotoxin accumulation in kernels. Biol. Bratislava 59: 809–816.
Moss M.O. 2002. Mycotoxin review – 2. Fusarium. Mycologist 16: 156–160.
Moss M.O., Thrane U. 2004. Fusarium taxonomy with relation to trichothecene formation. Toxicol. A. 2006. The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathol. 55 (2): 217–223.
Niessen L., Schmidt H., Vogel R.F. 2004. The use tri 5 gene sequences for PCR detection and taxonomy of trichotheceneproducing species in the Fusarium sectionSporatrichiella,Int. J. Food Microbiol. 95: 305–319.
Parry D.W., Jenkinso P., Mc Leod L. 1995. Fusarium ear blight (scab) in grain cereals: a review. Plant Pathol. 44: 207–238.
Pascale M., Haidukowski M., Visconti A. 2003. Determination of T-2 toxin in cereal grains by liquid chromatography with fluorescence detection after immunoaffinity column clean-up and derivatization with 1-anthroylnitrile. J. Chromatogr. A 989: 257–264.
Perkowski J., Basiński T. 2002. Natural contamination of oat with group A trichothecene mycotoxins in Poland. Food Addit. Cont. 20: 572–578.
Perkowsk J., Basiński T. 2008. A comparison of grain contamination with Fusarium toxins in naked and husked oat cultivars. Cereal Res. Communic. 36 B: 377–379.
Perkowski J., Buśko M., Stuper K., Kostecki M., Matysiak A., Szwajkowska-Michałek L. 2008. Concentration of ergosterol in small – grained naturally contaminated and inoculated cereals Biologia 36: 477–479.
Perkowski J., Kiecana I., Stachowiak J., Basiński T. 2003. Natural occurrence of scirpentriol in cereals infected by Fusarium species. Food Addit. Cont. 20: 572–578.
Perkowski J., Wiwart M., Buśko M., Laskowska M., Berthiller F., Kandler W., Krsteka R. 2007. Fusarium toxins and fungal biomass indicators in naturally contaminated wheat samples from north-eastern Poland in 2003. Food Addit. Cont. 24 (11): 1292–129.
Schollenberger M., Muller H.M., Rufle M., Suchy S., Planck S., Drochner W. 2005. Survey of Fusarium toxins in foodstuffs of plant origin marketed in Germany. Int. J. Food. Microbiol. 97: 317–326.
Snijders C.H.A. 2004. Resistance in wheat to Fusarium infection and trichothecene formation. Toxicol. Lett. 153: 37–46.
Swanson S.P., Nicoletti J., Rood H.D., Buck W.B., Cote L.M. 1987. Metabolism of three trichothecene mycotoxins, T-2 toxin, diacetoxyscirpenol and deoxynivalenol, by bovine rumen microorganisms. J. Chromatogr. 414: 335–342.
Thrane U., Adler A., Clasen P.E., Galvano F., Langseth W., Lew H., Logrieco., Nielsen K.F., Ritieni A. 2004. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int. J. Food Microbiol. 95: 257–266.
Visconti A., Mirocha C.J., Bottalico A., Chełkowski J. 1985. Trichothecene mycotoxins produced by Fusarium sporotrichioides strain P-11. Mycotoxin Res. 1: 3–10.
Wiśniewska H. 2005. Fusarioza kłosów pszenicy, Post. Nauk Rol. 4: 15–30.