Resistance risk assessment: realized heritability, cross resistance and resistance stability of acetamiprid in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae)
More details
Hide details
Central Agricultural Pesticides Laboratory, Agriculture Research Center, Giza, Egypt
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
El-Sayed Mohammad Soliman Mokbel   

Central Agricultural Pesticides Laboratory, Agriculture Research Center, 12618 Giza, Egypt
Online publish date: 2018-11-23
Submission date: 2018-04-24
Acceptance date: 2018-10-17
Journal of Plant Protection Research 2018;58(4):328–334
The cotton aphid, Aphis gossypii is an economically significant insect pest infesting various important crops and vegetables. The neonicotinoid, acetamiprid was recommended against aphids with excellent results. Resistance emergence and environmental pollution makes acetamiprid a favorable alternative to conventional insecticides. The aims of the present work were to predict acetamiprid resistance risk in A. gossypii, investigate cross resistance to other tested insecticides and explore acetamiprid stability in the absence of selection. A field-collected population from Sharqia governorate, Egypt was selected with acetamiprid. After 16 generations of selection, there was a 22.55-fold increase in LC50 and the realized heritability (h2) of resistance was 0.17. Projected rates of resistance indicated that, if h2 = 0.17 and 50% of the population was killed at each generation, then a tenfold increase in LC50 would be expected in 12.2 generations. If h2 was 0.27 then 7.63 generations would be needed to achieve the same level. In contrast, with h2 of 0.07 it necessitates about 30 generations of selection to reach the same level. Cross resistance studies exhibited that the selected strain showed obvious cross resistance to the other tested neonicotinoid members, moderate cross resistance to alpha-cypermethrin and no cross resistance to pymetrozine. Fortunately, resistance to acetamiprid in the cotton aphid was unstable and resistance reverses the nearby susceptible strain throughout five generations without exposure to acetamiprid. Our results exhibited cotton aphid potential to develop resistance to acetamiprid under continuous selection pressure. The instability of acetamiprid makes A. gossypii amenable to resistance management tactics such as rotation with pymetrozine.
The authors have declared that no conflict of interests exist.
1. Abbas N., Shad S.A. 2015. Assessment of resistance risk to lambda-cyhalothrin and cross-resistance to four other insecticides in the house fly, Musca domestica L. (Diptera: Muscidae). Parasitology Research 114 (7): 2629−2637. DOI: 10.1007/s00436-015-4467-2.
2. Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2): 265−267.
3. Afzal M.B., Shad S.A., Abbas N., Ayyaz M., Walker W.B. 2015. Cross-resistance, the stability of acetamiprid resistance and its effect on the biological parameters of cotton mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae), in Pakistan. Pest Management Science 71 (1): 151−158. DOI: 10.1002/ps.3783.
4. Askari-Saryazdi G., Hejazi M.J., Ferguson J.S., Rashidi M.R. 2015. Selection for chlorpyrifos resistance in Liriomyza sativae Blanchard: cross-resistance patterns, stability and biochemical mechanisms. Pesticide Biochemistry and Physiology 124: 86−92. DOI: 10.1016/j.pestbp.2015.05.002.
5. Bass C., Denholm I., Williamson M.S., Nauen R. 2015. The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology 121: 78−87. DOI: https://doi.org/10.1016/j.pest....
6. Bush M.R., Abdel-Aal Y.A., Saito K., Rock G.C. 1993. Azinphosmethyl resistance in the tufted apple bud moth (Lepidoptera: Tortricidae): reversion, diagnostic concentrations, associated esterases, and glutathione transferases. Journal of Economic Entomology 86 (2): 213−225. DOI: https://doi.org/10.1093/jee/86....
7. Cui L., Qi H., Yang D., Yuan H., Rui C. 2016. Cycloxaprid: A novel cis-nitromethylene neonicotinoid insecticide to control imidacloprid-resistant cotton aphid (Aphis gossypii). Pesticide Biochemistry and Physiology 132: 96−101. DOI: 10.1016/j.pestbp.2016.02.005.
8. Falconer D.S., Mackay T.F., Frankham R. 1996. Introduction to quantitative genetics (4th ed.). Trends in Genetics 12 (7): 280.
9. Finney D.J. 1971. Probit Analysis. 3rd ed. Cambridge University Press, New York, 333 pp. DOI: https://doi.org/10.1002/jps.26....
10. Gorman K., Slater R., Bland J.D., Clarke A., Wren J., McCaffery A., Denholm I. 2010. Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science 66 (11): 1186−1190. DOI: 10.1002/ps.1989.
11. Guo Y.C., Shanxia Z., Liuji Z., Guifen C. 1996. Studies on resistance trends of cotton aphid and cotton bollworm to fenvalerate in fields. Acta Agriculturae Universitatis Henanensis 30 (3): 284−287.
12. Herron G.A., Wilson L.J. 2011. Neonicotinoid resistance in Aphis gossypii Glover (Aphididae: Hemiptera) from Australian cotton. Australian Journal of Entomology 50 (1): 93−98. DOI: https://doi.org/10.1111/j.1440....
13. Hirata K., Kiyota R., Matsuura A., Toda S., Yamamoto A., Iwasa T. 2015. Association between the R81T mutation in the nicotinic acetylcholine receptor β1 subunit of Aphis gossypii and the differential resistance to acetamiprid and imidacloprid. Journal of Pesticide Science 40 (1): 25−31. DOI: https://doi.org/10.1584/jpesti....
14. Huseth A.S., Chappell T.M., Langdon K., Morsello S.C., Martin S., Greene J.K., Herbert A., Jacobson A.L., Reay-Jones F.P., Reed T., Reisig D.D. 2016. Frankliniella fusca resistance to neonicotinoid insecticides: an emerging challenge for cotton pest management in the eastern United States. Pest Management Science 72 (10): 1934−1945. DOI: https://doi.org/10.1002/ps.423....
15. Jutsum A.R., Heaney S.P., Perrin B.M., Wege P.J. 1998. Pesticide resistance: assessment of risk and the development and implementation of effective management strategies. Pesticide Science 54 (4): 435−446. DOI: https://doi.org/10.1002/(SICI)...<435::AIDPS844>3.0.CO;2-K.
16. Keiding J. 1986. Prediction or resistance risk assessment. p. 279−297. In: “Pesticide Resistance: Strategies and Tactics for Management”. National Academy Press, Washington, D.C., USA, 452 pp.
17. Matsuura A., Nakamura M. 2014. Development of neonicotinoid resistance in the cotton aphid, Aphis gossypii (Hemiptera: Aphididae) in Japan. Applied Entomology and Zoology 49 (4): 535−540. DOI: https://doi.org/10.1007/s13355....
18. Mokbel E.M.S. 2015. Prediction of resistance and its stability of cowpea aphid, Aphis craccivora (Koch) to chlorpyrifos-methyl. Egyptian Scientific Journal of Pesticides 1 (4): 24−29.
19. Moores G.D., Gao X., Denholm I., Devonshire A.L. 1996. Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii glover (Homoptera: Aphididae). Pesticide Biochemistry and Physiology 56 (2): 102−110. DOI: https://doi.org/10.1006/pest.1....
20. Ninsin K.D., Tanaka T. 2005. Synergism and stability of acetamiprid resistance in a laboratory colony of Plutella xylostella. Pest Management Science 61 (8): 723−727. DOI: 10.1002/ps.1043.
21. Pu X., Yang Y., Wu S., Wu Y. 2010. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Management Science 66 (4): 371−378. DOI: 10.1002/ps.1885.
22. Shah R.M., Abbas N., Shad S.A. 2015. Assessment of resistance risk in Musca domestica L. (Diptera: Muscidae) to methoxyfenozide. Acta Tropica 149: 32−37. DOI: 10.1016/j.actatropica.2015.05.009.
23. Tabashnik B.E. 1992. Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 85 (5): 1551−1559. DOI: https://doi.org/10.1093/jee/85....
24. Tomizawa M., Casida J.E. 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology 48 (1): 339−364. DOI: 10.1146/annurev.ento.48.091801.112731.
25. Wang K.Y., Liu T.X., Yu C.H., Jiang X.Y., Yi M.Q. 2002. Resistance of Aphis gossypii (Homoptera: Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. Journal of Economic Entomology 95 (2): 407−413.
26. Wang R., Fang Y., Mu C., Qu C., Li F., Wang Z., Luo C. 2017. Baseline susceptibility and cross-resistance of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, in Bemisia tabaci MED from China. Crop Protection 110: 283−287. DOI: https://doi.org/10.1016/j.crop....
27. Wei X., Pan Y., Xin X., Zheng C., Gao X., Xi J., Shang Q. 2017. Cross-resistance pattern and basis of resistance in a thiamethoxam-resistant strain of Aphis gossypii Glover. Pesticide Biochemistry and Physiology 138: 91−96. DOI: 10.1016/j.pestbp.2017.03.007.
28. Xu Y., Yang X., Rui C., Wang H., Chen X. 2004. Susceptilbility of Helicoverpa armigera, Aphis gossypii, and T. turkestani (Ugarovet Nikolski) to insecticides in Xinjiang. Acta Agriculturae Boreali-Occidentalis Sinica 13 (2): 74−78.
29. Yang Y., Huang L., Wang Y., Zhang Y., Fang S., Liu Z. 2016. No cross-resistance between imidacloprid and pymetrozine in the brown planthopper: status and mechanisms. Pesticide Biochemistry and Physiology 130: 79−83. DOI: 10.1016/j.pestbp.2015.11.007.