ORIGINAL ARTICLE
Study of postemergence-directed herbicides for redroot pigweed (Amaranthus retroflexus L) control in winter wheat in southern Russia
Meisam Zargar 1, A,C  
,  
Maryam Bayat 1, B,F
,  
 
 
More details
Hide details
1
Department of AgroBiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Meisam Zargar   

Department of AgroBiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia
Online publication date: 2019-12-23
Submission date: 2019-06-28
Acceptance date: 2019-08-19
 
Journal of Plant Protection Research 2020;60(1):7–13
KEYWORDS
TOPICS
ABSTRACT
Redroot pigweed (Amaranthus retroflexus L). is a broadleaf weed in autumn crop fields in Russia. Four field experiments were performed in Stalskiy region, southern Russia in two growing seasons, 2016 and 2017, to investigate the effects of postemergence applications of applied alone or in tank mixtures in winter wheat cultivars Tanya and Bagrat. Redroot pigweed control was greatest with tribenuron and all herbicide treatments containing tribenuron. The lowest redroot pigweed control was with aminopyralid/florasulam (study 1) and triasulfuron (study 2), respectively, whereas redroot pigweed had intermediate responses to the other examined herbicides. Tribenuron plus fluroxypyr sprayed on wheat cultivar ‘Tanya’, and tribenuron plus triasulfuron on wheat cultivar ‘Bagrat’ resulted in increased wheat grain yields. Overall, tribenuron and herbicides containing tribenuron provided the most efficient redroot pigweed control compared with the other herbicides and consistently maintained optimal winter wheat yields. Tribenuron could ameliorate redroot resistance to herbicides in wheat fields in southern Russia.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
FUNDING
The publication has been prepared with the support of the RUDN University Program 5-100.
 
REFERENCES (28)
1.
Beckie H.J., Harker K.N. 2017. Our top 10 herbicide-resistant weed management practices. Pest Management Science 73 (6): 1045–1052. DOI: https://doi.org/10.1002/ps.454....
 
2.
Beres B.L., Harker K.N., Clayton G.W., Bremer E., Blackshaw R.E., Graf R.J. 2010. Weed competitive ability of spring and winter cereals in the Northern Great Plains. Weed Technology 24 (2): 108–116. DOI: https://doi.org/10.1614/wt-d-0....
 
3.
Blackshaw R.E. 1993. Downy brome (Bromus tectorum) density and relative time of emergence affects interference in winter wheat (Triticum aestivum). Weed Science 41 (4): 551–556. DOI: https://doi.org/10.1017/s00431....
 
4.
Curran W.S., Wallace J.M., Mirsky S., Crockett B. 2015. Effectiveness of herbicides for control of hairy vetch (Vicia villosa) in winter wheat. Weed Technology 29 (3): 509–518. DOI: https://doi.org/10.1614/wt-d-1....
 
5.
Damalas C.A. 2004. Herbicide tank mixtures: common interactions. International Journal of Agriculture and Biology 1: 209–2012.
 
6.
Evans S.P., Knezevic S.Z., Lindquist J.L., Shapiro C.A. Blankenship E.E. 2003. Nitrogen application influences the critical period for weed control in corn. Weed Science 51 (3): 408–417. DOI: https://doi.org/10.1614/0043-1....
 
7.
Francischini A.C., Constantin J., Oliveira J.r. R.S. 2014. Resistance of Amaranthus retroflexus to acetolactate synthase inhibitor herbicides in Brazil. Planta Daninha 32 (2): 437–446. DOI: https://doi.org/10.1590/s0100-....
 
8.
Ferguson G.M., Hamill A.S., Tardif F.J. 2001. ALS-inhibitor resistance in populations of Amaranthus powellii and Amaranthus retroflexus. Weed Science 9: 448–453. DOI: https://doi.org/10.1614/0043-1....
 
9.
Galon L., David F.A., Forte C.T., Juniro F.W.R., Radunz A.L., Kujawinski R., Radunz L.L., Castoldi C.T., Perin G.F., Mossi A.J. 2018. Chemical management of weeds in corn hybrids. Weed Biology and Management 18 (1): 26–40. DOI: https://doi.org/10.1111/wbm.12....
 
10.
Glazunova J.A., Bezgina D.V., Ustymov L.V., Maznitsyna O.V. 2015. Modern herbicides in winter wheat crops and their influence on crop yield N.N. Agriculture and Crop Production 9: 29–31. (in Russian).
 
11.
Huang Z., Huang H., Chen J., Chen J., Wei S., Zhang C. 2019. Nicosulfuron-resistant Amaranthus retroflexus L. in Northeast China. Crop Protestation 122: 79–83. DOI: https://doi.org/10.1016/j.crop....
 
12.
Heap I. 2018. The international survey of herbicide resistant weeds. Available on: http://www.weed science.com.
 
13.
Heap I. 2019. The International Survey of Herbicide Resistant Weeds. Available on: http://www.weedscience.org. [Assessed: May 11, 2019].
 
14.
Johnson E.N., Wang Z., Geddes C.M., Coles K., Hamman B., Beres B.L. 2017. Pyroxasulfone is effective for management of Bromus spp. in winter wheat in western Canada. Weed Technology 32 (6): 739–748. DOI: https://doi.org/10.1017/wet.20....
 
15.
Maciel C.D.G., Neto A.M.O., Guerra N., Maciel A.M.C., Jardim C.E., Silva A.A.P. 2013. Potencialization of mesotrione efficiency in tank mixture with inhibiting of photosystem II by distinct absorption pathways of crabgrass. Revista Brasileira de Herbicidas 12: 210–219. (in Portuguese).
 
16.
Mafakheri S., Zargar M., Fakhri K. 2012. The best application time and dose of herbicide for optimum weed management in two red bean cultivars. Indian Journal of Science and Technology 5: 1848–50.
 
17.
McNaughton K.E., Letarte J., Lee E.A., Tardif F.J. 2005. Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus and powell amaranth (Amaranthus powellii). Weed Science 53 (1): 17–22. DOI: https://doi.org/10.1614/ws-04-....
 
18.
Mennan H., Streibigb J.C., Ngouajioc M., Cankaya S. 2011. Response of two catchweed bedstraw (Galium aparine) populations to post-emergence herbicides in winter wheat. International Journal of Pest Management 57 (4): 347–356. DOI: https://doi.org/10.1080/096708....
 
19.
Mohammadi H., Ismail B.S. 2018. Effect of herbicides on the density of broad leaf weeds and their effect on the growth and yield components of wheat (Triticum aestivum L.). Journal of Agronomy 17 (1): 11–17. DOI: https://doi.org/10.3923/ja.201....
 
20.
Nurse R.E., Hamill A.S., Swanton C.J., Tardif F.J., Sikkema P.H. 2007. Weed control and yield response to foramsulfuron in corn. Weed Technology 21 (2): 453–458. DOI: https://doi.org/10.1614/wt-06-....
 
21.
Poska C. 2018. Specify of weeds to herbicides in the Rostov region. International of Humanities and Natural Sciences 6: 137–140. (in Russian).
 
22.
Roberts J.R., Peeper T.F., Solie J.B. 2001. Wheat (Triticum aestivum) row spacing, seeding rate and cultivar affect interference from rye (Secale cereale). Weed Technology 15 (1): 19–25. DOI: https://doi.org/10.1614/0890-0....
 
23.
Samtani J.B., Rachuy J.S., Mou B., Fennimore S.A. 2014. Evaluation of tribenuron-methyl on sulfonylurea-resistant lettuce germplasm. Weed Technology 28 (3): 510–517. DOI: https://doi.org/10.1614/wt-d-1....
 
24.
Sarabi V., Mohassel M.H.R., Valizadeh M. 2011. Response of redroot pigweed (Amaranthus retroflexus L.) to tank mixtures of 2,4-D plus MCPA with foramsulfuron. Australian Journal of Crop Science 5: 605–610.
 
25.
Sheibany K., Meybodi M.A.B., Atri A. 2009. Competitive effects of redroot pigweed (Amaranthus retroflexus) on the growth indices and yield of corn. Weed Biology and Management 9 (2): 152–159. DOI: https://doi.org/10.1111/j.1445....
 
26.
Spiridonov Y.Y., Shestakov V.G. 2013. Development and effective use of combined domestic herbicides for weed control in plantations of spiked cereals. Agrokhimia 1: 35–49. (in Russian).
 
27.
Zargar M., Romanova E., Trifonova A., Shmelkova E., Kezimana P. 2017a. AFLP analysis of genetic diversity in soybean [Glycine max (l.) Me rr.] cultivars Russian and foreign selection. Agronomy Research 15 (5): 2217–2225. DOI: https://doi.org/10.15159/AR.17....
 
28.
Zargar M., Astrakhanova T., Pakina E., Astrakhanov I., Rimikhanov A., Gyul’magomedova A., Ramazanova Z., Rebouh N. 2017b. Survey of biological components efficiency on safety and productivity of different tomato cultivars. Research on Crops 18 (2): 283–292. DOI: https://doi.org/10.5958/2348-7....
 
eISSN:1899-007X
ISSN:1427-4345