ORIGINAL ARTICLE
Functional response of Habrobracon hebetor Say (Hym.: Braconidae) to Mediterranean flour moth (Anagasta kuehniella Zeller), in response to pesticides
,
 
 
 
More details
Hide details
1
Young Researchers Club, Parsabad Moghan Branch, Islamic Azad University, Parsabad, 56918-53356, Iran
 
2
Department of Plant Protection, College of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
 
 
Submission date: 2013-04-01
 
 
Acceptance date: 2013-10-21
 
 
Corresponding author
Vahid Mahdavi
Young Researchers Club, Parsabad Moghan Branch, Islamic Azad University, Parsabad, 56918-53356, Iran
 
 
Journal of Plant Protection Research 2013;53(4):399-403
 
KEYWORDS
TOPICS
ABSTRACT
The functional response is a behavioral phenomena defined as the relation between the parasitized host per each parasitoid and host density. This phenomenon can be useful in assessing parasitoid efficiency for the biological control of the host. Parasitoid wasps are most important insects and they play a significant role in the natural control of pests via their parasitism activities. In this study, the effects of diazinon and malathion were evaluated on the functional response of Habrobracon hebetor Say to different densities of last instar larvae of Anagasta kuehniella Zeller. Young adult females (< 24 h old) of the parasitoid were exposed to LC 30 values of pesticides. Host densities of 2, 4, 8, 16, 32, and 64 were offered, to treated young females for 24 h in 10 cm Petri dishes. At this point, the parasitism data were recorded. The experiments were conducted in eight replications. The functional response was type Ш in the control and insecticide treatments. Searching efficiency in the control, diazinon and malathion-treated wasps were 0.008±0.002, 0.003±0.002, and 0.004±0.002 h–1, handling times were 1.38±0.1, 7.95±0.91, and 6.4±0.81 h, respectively. Diazinon and malathion had the highest and the lowest effect on searching efficiency of H. hebetor, respectively. After conducting advanced field studies, it was found that malathion may be used as a compatible chemical material with biological control agent in IPM programs.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (37)
1.
Abedi Z., Saber M., Gharekhani Gh., Mehrvar A., Mahdavi V. 2012. Effects of azadirachtin, cypermethrin, methoxyfenozide and pyridalil on functional response of Habrobracon hebetor Say (Hym.: Braconidae). J. Plant Prot. Res. 52 (3): 353–358.
 
2.
Alikhani M., Hassanpour M., Golizadeh A., Rafiee-Datjerdi H., Razmjou J. 2010. Temperature-dependent functional response of Habrobracon hebetor Say (Hym.: Braconidae) to larvae of Anagasta kuehniella Zeller (Lep.: Pyralidae). p. 48. In: Proc. 19th Iran. Plant Prot. Cong., Tehran, Iran, 31 July – 3 August, 639 pp.
 
3.
Attaran M.R. 1996. Effects of laboratory hosts on biological attributes of parasitoid wasp Bracon hebetor Say. M.Sc. Thesis. Tarbiat Modarres University, Tehran, Iran, 83 pp.
 
4.
Baker J.E., Fabrick J.A. 2000. Host haemolymph proteins and protein digestion in larval Habrobracon hebetor (Hym.: Braconidae). Insect Biochem. Mol. Biol. 30 (10): 937–946.
 
5.
Darwish E., El-Shazly M., El-Sherif H. 2003. The choice of probing sites by Bracon hebetor (Say) (Hymenoptera: Braconidae) foraging for Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J. Stored Prod. Res. 39 (3): 265–276.
 
6.
Faal-Mohammad Ali H., Seraj A.A., Talebi-Jahromi Kh., Shishebor P., Mosadegh M.S. 2010. The effect of sublethal concentration on functional response of Habrobracon hebetor Say (Hymenoptera: Braconidae) in larval and pupal stages. 236 p. In: Proc. 19th Iran. Plant Prot. Cong., Tehran, Iran, 31 July – 3 August, 639 pp.
 
7.
Hassell M.P. 1978. The Dynamics of Arthropod Predator Prey Systems. p. 1–237. In: “Monographs in Population Biology” (S.A. Levin, H.S. Horn, eds.). Princeton University Press, Princeton, 428 pp.
 
8.
Hassell M.P., Lawton J.H., Beddigton J.R. 1977. Sigmoid functional responses by invertebrate predators and parasitoids. J. Anim. Ecol. 46 (1): 249–262.
 
9.
Heimpel G.E., Antolin M.F., Franqui R.A., Strand M.R. 1997. Reproductive isolation and genetic variation between two “strains” of Bracon hebetor (Hymenoptera: Braconidae). Biol. Control. 9 (3): 149–156.
 
10.
Hentz M.G., Ellsworrth P.C., Naranjo S.E., Watson T.F. 1998. Development, longevity and fecundity of Chelonus sp. nr. curvimaculatus (Hymenoptera: Braconidae), an egg-larval parasitoid of pink bollworm (Lepidoptera: Gelechiidae). Environ. Entomol. 27 (2): 443–449.
 
11.
Holling C.S. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91 (7): 385–398.
 
12.
Holling C.S. 1961. Principles of insect predation. Annl. Rev. Entomol. 6: 163–183.
 
13.
Holling C.S. 1966. The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 48: 1–86.
 
14.
Hull L.A., Beers E.H. 1985. Ecological sensitivity modifying chemical control practices to preserve natural enemies. p. 103–121. In: “Biological control in agricultural IPM systems” (M.A. Hoy, D.C. Herzog, eds.). Academic Press, New York, Orlando (FL), 293 pp.
 
15.
Ives A.R., Kareiva R., Perry R. 1993. Response of a predator to variation in prey density at three hierarchical scales lady beetles feeding on aphids. Ecology 74 (7): 1929–1938.
 
16.
Juliano S.A. 1993. Nonlinear curve fitting: predation and functional response curves. p. 159–182. In: “Design and Analysis of Ecological Experiments” (S.M. Scheiner, J. Gurevitch, eds.). Chapman and Hall, New York, 445 pp.
 
17.
Luck R.F. 1985. Principles of Arthropod Predation. p. 497–530. In: “Ecological Entomology” (C.B. Huffaker, R.L. Rabb, eds.). John Wiley & Sons, New York, 756 pp.
 
18.
Mills N.J., Getz W.M. 1996. Modelling the biological control of insect pests: a review of host-parasitoid models. Ecol. Model. 92 (2–3): 121–143.
 
19.
Mudd A., Corbet S.A. 1982. Response of the ichneumonid parasite Nemeritis canescens to Kairomones from the flour moth, Ephestia kuehniella. J. Chem. Ecol. 8 (5): 843–850.
 
20.
Murdoch W.W., Oaten A. 1975. Predation and Population Stability. Adv. Ecol. Res. 9: 1–131.
 
21.
Navaei A.N., Taghizadeh M., Javanmoghaddam H., Oskoo T., Attaran M.R. 2002. Efficiency of parasitoid wasps, Trichogramma pintoii and Habrobracon hebetor against Ostrinia nubilalis and Helicoverpa sp. on maize in Moghan. p. 193. In: Proc. 15th Iran. Plant Prot. Cong., Kermanshah, Iran.
 
22.
Oaten A., Murdoch W.W. 1975. Functional response and stability in predator-prey systems. Am. Nat. 109: 289–298.
 
23.
O‘Neil R.J. 1990. Functional response of arthropod predators and its role in the biological control ofinsect pests in agricultural systems. p. 83–96. In: “New directionsin biological control: Alternatives for suppressing agricultural pests and diseases.” (P.E. Dunn, R.R. Baker, eds.). Alan R. Liss, Inc., New York.
 
24.
Pervez A., Omkar A. 2005. Functional responses of coccinellid predators: an illustration of logistic approach. J. Insect Sci. 5 (5): 1–6.
 
25.
Rafiee-Dastjerdi H. 2008. Studing lethal effects of thiodicarb, profenofos, spinosad and hexaflumuron on cotton bollworm and their lethal and sublethal effects on ectoparasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae). Ph.D. dissertation. Tabriz University, Tabriz, Iran, 108 pp.
 
26.
Rafiee-Dastjerdi H., Hejazi M.J., Nouri-Ganbalani, Gh., Saber, M. 2009. Effects of some insecticides on functional response of ectoparasitoid, Habrobracon hebetor Say (Hym.: Braconidae). J. Entomol. 6 (3): 161–166.
 
27.
Rolle R.S., Lawrence P.O. 1994. Characterization of a 24 kDa parasitism-specific haemolymph protein from pharate pupae of the Caribbean fruit fly, Anastrepha suspensa. Arch. Insect Biochem. Physiol. 25 (3): 227–244.
 
28.
Royama T. 1971. A comparative study of models for predation and parasitism. Res. Popul. Ecol. 1: 1–91.
 
29.
Rosenheim J.A., Hoy M.A. 1988. Sublethal effects of pesticides on the parasitoid Aphytis melinus (Hymenoptera: Aphelinidae). J. Econ. Entomol. 81 (2): 476–483.
 
30.
Saber M., Hejazi M.J., Sheikhi-Garjan A. 2002. The sublethal effects of fenitrothion and deltamethrin insecticides on Trissolcus semistriatus. p. 13. In: Proc. 15th Iran. Plant Prot. Cong. Kermanshah, Iran.
 
31.
Saber M., Hejazi M.J., Kamali K., Moharramipour S. 2005. Lethal and sublethal effects of fenitrothion and deltamethrin residues on the egg parasitoid Trissolcus grandis (Hymenoptera: Scelionidae). J. Econ. Entomol. 98 (1): 35–40.
 
32.
Salvador G., Consoli L.F. 2008. Changes in the haemolymph and fat body metabolites of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) parasitized by Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Biol. Control. 45 (1): 103–110.
 
33.
Sarmadi S. 2008. Laboratory investigation on lethal and sub-lethal effects of imidacloprid, indoxacarb and deltamethrin on parasitoid wasp Habrobracon hebetor Say (Hymenoptera: Braconidae). M.Sc. Thesis. University of Mohaghegh Ardabili, Ardabil, Iran, 103 pp.
 
34.
SAS Institute. 2002. The SAS System for Windows. SAS Institute, Cary, NC, 58 pp.
 
35.
Solomon M.E. 1949. The natural control of animal population. J. Anim. Ecol. 18 (1): 1–35.
 
36.
Tostowaryk W. 1972. The effect of prey defence on the functional response of Podisus modestus (Hemiptera: Pentatomidae) to densities of the sawflies Neodiprion swainei and N. pratti banksianae (Hymenoptera: Neodiprionidae). Canadian Entomol. 104 (1): 61–69.
 
37.
Yu S.H., Ryoo M.I., Na J.H., Choi W.I. 2002. Effect of host density on egg dispersion and the sex ratio of progeny of Bracon hebetor (Hymenoptera: Braconidae). J. Stored Prod. Res. 39 (4): 385–393.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top