REVIEW
Figure from article: Microbiota homeostasis:...
 
HIGHLIGHTS
  • Symbiotic and immunity signalling
  • Plant molecular cues in recruiting microbiome
  • Microbial inheritance between generations
  • Microbial markets
KEYWORDS
TOPICS
ABSTRACT
Plants have been associated with microflora for more than 400 million years, and this long-standing interconnection takes place in different regions of the plants. The complex community of microbes can be beneficial or pose a threat as pathogens. Previous studies have investigated plant immune responses and interactions with diverse microbes however, several aspects remain unclear and require further exploration. Plants utilize several small molecules through their associated biochemical pathways to aid this recognition process. This review examines recent progress on the distinct signaling pathways of various plant small molecules, including amino acids, lipids, and plant secondary metabolites, as well as the receptor-like kinases engaged in recruiting and scrutinizing the microbes involved in interactions. This review additionally explores how the rhizosphere and phyllosphere interact to shape the microbiome, facilitating plant homeostasis. Furthermore, it highlights the remarkable similarities between markets in human societies and those found in microbe - plant biological systems. Together, these ideas offer a framework for understanding how plants interact with advantageous microorganisms while simultaneously limiting harmful pathogens. The specific biochemical mechanisms and their interconnections are gradually being elucidated, providing a potential foundation for the development of novel plant protection strategies. With a holistic approach, these plant‒microbe interactions can be exploited to engineer plants with multiomics approaches for improved performance, which can enhance crop resilience, promote sustainable agriculture, and address global food security in the long term.
RESPONSIBLE EDITOR
Iwona Adamska
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (135)
1.
Abdelfattah A., Tack A.J.M., Lobato C., Wassermann B., Berg G. 2023. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends in Microbiology 31: 9–20. DOI: https://doi.org/10.1016/j.tim.....
 
2.
Abdullaeva Y., Ambika Manirajan B., Honermeier B., Schnell S., Cardinale M. 2021. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. Journal of Advanced Research 31: 123–135. DOI: https://doi.org/10.1016/j.jare....
 
3.
Abedi A., Hajiahmadi Z., Kordrostami M., Esmaeel Q., Jacquard C. 2021. Analyses of lysin-motif receptor-like kinase (LysM-RLK) gene family in allotetraploid Brassica napus L. and its progenitor species: an insilico study. Cells 11 (1): 37. DOI: https://doi.org/10.3390/cells1....
 
4.
Abedini D., Jaupitre S., Bouwmeester H., Dong L. 2021. Metabolic interactions in beneficial microbe recruitment by plants. Current Opinion in Biotechnology 68: 45–52. DOI: https://doi.org/10.1016/j.copb....
 
5.
Alfieri A., Doccula F.G., Pederzoli R., Grenzi M., Bonza M.C., Luoni L., Candeo A., Armada N.R., Barbiroli A., Valentini G., Schneider T.R., Bassi A., Bolognesi M., Nardini M., Costa A. 2020. The structural bases for agonist diversity in an Arabidopsis thaliana glutamate receptor-like channel. Proceedings of the National Academy of Sciences of the United States of America 117: 22847–22858. DOI: https://doi.org/10.1073/pnas.1....
 
6.
Antolín-Llovera M., Petutsching E.K., Ried M.K., Lipka V., Nürnberger T., Robatzek S., Parniske M. 2014. Knowing your friends and foes - plant receptor-like kinases as initiators of symbiosis or defence. New Phytologist 204: 247–266. DOI: https://doi.org/10.1111/nph.13....
 
7.
Arif I., Batool M., Schenk P.M. 2020. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends in Biotechnology 38: 893–904. DOI: https://doi.org/10.1016/j.tibt....
 
8.
Backer R., Rokem J.S., Ilangumaran G., Lamont J., Praslickova D., Ricci E., Subramanian S., Smith D.L. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in plant science 9: 1473. DOI: https://doi.org/10.3389/fpls.2....
 
9.
Bergna A., Cernava T., Rändler M., Grosch R., Zachow C., Berg G. 2018. Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes Journal 2: 123–135. DOI: https://doi.org/10.1094/PBIOME....
 
10.
Besnard J., Sonawala U., Maharjan B., Collakova E., Finlayson S.A., Pilot G., McDowell J., Okumoto S. 2021. Increased expression of UMAMIT amino acid transporters results in activation of salicylic acid dependent stress response. Frontiers in Plant Science 11: 606386. DOI: https://doi.org/10.3389/fpls.2....
 
11.
Bozsoki Z., Gysel K., Hansen S.B., Lironi D., Krönauer C., Feng F., de Jong N., Vinther M., Kamble M., Thygesen M.B., Engholm E., Kofoed C., Fort S., Sullivan J.T., Ronson C.W., Jensen K.J., Blaise M., Oldroyd G., Stougaard J., Andersen K.R., Radutoiu S. 2020. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science 369: 1511–1518. DOI: https://doi.org/10.1126/scienc....
 
12.
Bragazzi N.L., Woldegerima W.A., Siri A. 2024. Economic microbiology: exploring microbes as agents in economic systems. Frontiers in Microbiology 15: 1305148. DOI: https://doi.org/10.3389/fmicb.....
 
13.
Buendia L., Girardin A., Wang T., Cottret L., Lefebvre B. 2018. LysM receptor-like kinase and LysM receptor-like protein families: an update on phylogeny and functional characterization. Frontiers in Plant Science 9: 1531. DOI: https://doi.org/10.3389/fpls.2....
 
14.
Cadot S., Guan H., Bigalke M., Walser J.C., Jander G., Erb M., van der Heijden M.G., Schlaeppi, K. 2021. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome 9 (1): 103. DOI: https://doi.org/10.1186/s40168....
 
15.
Carlström C.I., Field C.M., Bortfeld-Miller M., Müller B., Sunagawa S., Vorholt J.A. 2019. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nature Ecology & Evolution 3: 1445–1454. DOI: https://doi.org/10.1038/s41559....
 
16.
Chaudhry V., Runge P., Sengupta P., Doehlemann G., Parker J.E., Kemen E. 2021. Shaping the leaf microbiota: Plant-microbe-microbe interactions. Journal of Experimental Botany 72 (1): 36–56. DOI: https://doi.org/10.1093/jxb/er....
 
17.
Chen T., Nomura K., Wang X., Sohrabi R., Xu J., Yao L., Paasch B.C., Ma L., Kremer J., Cheng Y., Zhang L., Wang N., Wang E., Xin X.F., He S.Y. 2020. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580: 92–96. DOI: https://doi.org/10.1038/s41586....
 
18.
Cheng X., Etato D.W., van de Mortel J.E., Dekkers E., Nguyen L., Medema M.H., Raaijmakers J.M. 2017. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens. Environmental Microbiology 19: 1538–1551. DOI: https://doi.org/10.1111/1462-2....
 
19.
Cope K.R., Bascaules A., Irving T.B., Venkateshwaran M., Maeda J., Garcia K., Rush T.A., Ma C., Labbé J., Jawdy S., Steigerwald E., Setzke J., Fung E., Schnell K.G., Wang Y., Schleif N., Bücking H., Strauss S.H., Maillet F., Jargeat P., Bécard G., Puech-Pagès V., Ané J.M. 2019. The ectomycorrhizal fungus Laccaria bicolor produces lipochitooligosaccharides and uses the common symbiosis pathway to colonize populus roots. Plant Cell 31: 226–2240. DOI: https://doi.org/10.1105/tpc.18....
 
20.
Cotton T.E.A., Pétriacq P., Cameron D.D., Meselmani M.A., Schwarzenbacher R., Rolfe S.A., Ton J. 2019. Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME Journal 13: 1402–1414. DOI: https://doi.org/10.1038/s41396....
 
21.
Couto D., Zipfel C. 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology 16: 537–552. DOI: https://doi.org/10.1038/nri.20....
 
22.
De Mandal S., Jeon J. 2023. Phyllosphere microbiome in plant health and disease. Plants 12: 3481–3497. DOI: https://doi.org/10.3390/plants....
 
23.
Dent D., Cocking E. 2017. Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution. Agriculture & Food Security 6: 1–10. DOI: https://doi.org/10.1186/s40066....
 
24.
Desaki Y., Miyata K., Suzuki M., Shibuya N., Kaku H. 2018. Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immunity 24 (2): 92–100. DOI: https://doi.org/10.1177/175342....
 
25.
DeWolf E., Brock M.T., Calder W.J., Kliebenstein D.J., Katz E., Li B., Morrison H.G., Maïgnien L., Weinig C. 2023. The rhizosphere microbiome and host plant glucosinolates exhibit feedback cycles in Brassica rapa. Molecular Ecology 32 (3): 741–751. DOI: https://doi.org/0.1111/mec.163....
 
26.
Durr J., Reyt G., Spaepen S., Hilton S., Meehan C., Qi W., Kamiya T., Flis P., Dickinson H.G., Feher A., Shivshankar U., Pavagadhi S., Swarup S., Salt D., Bending G.D., Gutierrez-Marcos J. 2021. A novel signaling pathway required for arabidopsis endodermal root organization shapes the rhizosphere microbiome. Plant and Cell Physiology 62: 1234–1248. DOI: https://doi.org/10.1093/pcp/pc....
 
27.
Fang Z.T., Kapoor R., Datta A., Okumoto S. 2022. Tissue specific expression of UMAMIT amino acid transporters in wheat. Scientific Reports 12 (1): 348. DOI: https://doi.org/10.1038/s41598....
 
28.
Feng Z., Inaba J.I., Nagy P.D. 2021. The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles. Proceedings of the National Academy of Sciences of the United States of America 118: e2016066118. DOI: https://doi.org/10.1073/PNAS.2....
 
29.
Fröschel C., Komorek J., Attard A., Marsell A., Lopez-Arboleda W.A., Le Berre J., Wolf E., Geldner N., Waller F., Korte A., Dröge-Laser W. 2021. Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. Cell Host & Microbe 29: 223–237. DOI: https://doi.org/10.1016/j.chom....
 
30.
Gao Y.Q., Su Y., Chao D.Y. 2024. Exploring the function of plant root diffusion barriers in sealing and shielding for environmental adaptation. Nature Plants: 1–10. DOI: https://doi.org/10.1038/s41477....
 
31.
González-Mas N., Gutiérrez-Sánchez F., Sánchez-Ortiz A., Grandi L., Turlings T.C.J., Muñoz-Redond J.M., Moreno-Rojas J.M., Quesada-Moraga E. 2021. Endophytic colonization by the entomopathogenic fungus Beauveria Bassiana affects plant volatile emissions in the presence or absence of chewing and sap-sucking insects. Frontiers in Plant Science 12. DOI: https://doi.org/10.3389/fpls.2....
 
32.
Goto Y., Maki N., Ichihashi Y., Kitazawa D., Igarashi D., Kadota Y., Shirasu K. 2020. Exogenous treatment with glutamate induces immune responses in Arabidopsis. Molecular Plant Microbe Interactions 33: 1367–1376. DOI: https://doi.org/10.1094/MPMI-0....
 
33.
Gough C., Cottret L., Lefebvre B., Bono J.J. 2018. Evolutionary history of plant LysM receptor proteins related to root endosymbiosis. Frontiers in Plant Science 9: 923. DOI:https://doi.org/10.3389/fpls.2....
 
34.
Grady K.L., Sorensen J.W., Stopnisek N., Guittar J., Shade A. 2019. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nature Communications 10: 4034. DOI: https://doi.org/10.1038/s41467....
 
35.
Gupta R., Elkabetz D., Leibman-Markus M., Sayas T., Schneider A., Jami E., Kleiman M., Bar M. 2022. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. ISME Journal 16: 1365–1376. DOI: https://doi.org/10.1038/s41396....
 
36.
Hammerstein P., Noë R. 2016. Biological trade and markets. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150101. DOI: https://doi.org/10.1098/rstb.2....
 
37.
Harbort C.J., Hashimoto M., Inoue H., Niu Y., Guan R., Rombolà A.D., Kopriva S., Voges M.J., Sattely E.S., Garrido-Oter R., Schulze-Lefert P. 2020. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host & Microbe 28 (6): 825–837. DOI: https://doi.org/10.1016/j.chom....
 
38.
Hardoim P.R., van Overbeek L.S., Berg G., Pirttilä A.M., Compant S., Campisano A., Döring M., Sessitsch A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews 79: 293–320. DOI: https://doi.org/10.1128/mmbr.0....
 
39.
Hu L., Robert C.A.M., Cadot S., Zhang X., Ye M., Li B., Manzo D., Chervet N., Steinger T., Van Der Heijden M.G.A., Schlaeppi K., Erb M. 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications 9: 4033. DOI: https://doi.org/10.1038/s41467....
 
40.
Huang A.C., Jiang T., Liu Y.X., Bai Y.C., Reed J., Qu B., Goossens A., Nützmann H.W., Bai Y., Osbourn A. 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364. DOI: https://doi.org/10.1126/scienc....
 
41.
Humphrey P.T., Whiteman N.K. 2020. Insect herbivory reshapes a native leaf microbiome. Nature Ecology & Evolution 4: 221–229. DOI: https://doi.org/10.1038/s41559....
 
42.
Jacoby R.P., Chen L., Schwier M., Koprivova A., Kopriva S. 2020. Recent advances in the role of plant metabolites in shaping the root microbiome. F1000Research. 9. DOI: https://doi.org/10.12688/f1000....
 
43.
Jacoby R.P., Koprivova A., Kopriva S. 2021. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. Journal of Experimental Botany 72 (1): 57–69. DOI: https://doi.org/10.1093/jxb/er....
 
44.
Jose J., Ghantasala S., Choudhury S.R. 2020. Arabidopsis transmembrane receptor-like kinases (RLKs): A bridge between extracellular signal and intracellular regulatory machinery. International Journal of Molecular Sciences 21 (11): 4000. DOI: https://doi.org/10.3390/ijms21....
 
45.
Kawa D., Brady S.M. 2022. Root cell types as an interface for biotic interactions. Trends in Plant Science 27 (11): 1173–1186. DOI: https://doi.org/10.1016/j.tpla....
 
46.
Kawasaki A., Dennis P.G., Forstner C., Raghavendra A.K.H., Richardson A.E., Watt M., Mathesius U., Gilliham M., Ryan P.R. 2021. The microbiomes on the roots of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) exhibit significant differences in structure between root types and along root axes. Functional Plant Biology 48: 1145–1158. DOI: https://doi.org/10.1071/FP2035....
 
47.
Kembel S.W., O’Connor T.K., Arnold H.K., Hubbell S.P., Wright S.J., Green J.L. 2014. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences of the United States of America 111: 13715–13720. DOI: https://doi.org/10.1073/pnas.1....
 
48.
Kim B., Westerhuis J.A., Smilde A.K., Floková K., Suleiman A.K., Kuramae E.E., Bouwmeester H.J., Zancarini A. 2022. Effect of strigolactones on recruitment of the rice root-associated microbiome. FEMS Microbiology Ecology 98 (2): fiac010. DOI: https://doi.org/10.1093/femsec....
 
49.
Kong H.G., Song G.C., Ryu C.M. 2019. Inheritance of seed and rhizosphere microbial communities through plant–soil feedback and soil memory. Environmental Microbiology Reports 11 (4): 479–486. DOI: https://doi.org/10.1111/1758-2....
 
50.
Kong H.G., Song G.C., Sim H.J., Ryu C.M. 2021. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME Journal 15: 397–408. DOI: https://doi.org/10.1038/s41396....
 
51.
Koprivova A., Schuck S., Jacoby R.P., Klinkhammer I., Welter B., Leson L., Martyn A., Nauen J., Grabenhorst N., Mandelkow J.F., Zuccaro A., Zeier J., Kopriva S. 2019. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proceedings of the National Academy of Sciences of the United States of America 116: 15735–15744. DOI: https://doi.org/10.1073/pnas.1....
 
52.
Kovalev N., Pogany J., Nagy P.D. 2020. Reconstitution of an RNA virus replicase in artificial giant unilamellar vesicles supports full replication and provides protection for the double-stranded RNA replication intermediate. Journal of Virology 94 (14): e00267–20. DOI: https://doi.org/10.1128/jvi.00....
 
53.
Kouzai Y., Nakajima K., Hayafune M., Ozawa K., Kaku H., Shibuya N., Minami E., Nishizawa Y. 2014. CEBiP is the major chitin oligomer-binding protein in rice and plays a main role in the perception of chitin oligomers. Plant Molecular Biology 84: 519–528. DOI: https://doi.org/10.1007/s11103....
 
54.
Kudjordjie E.N., Sapkota R., Steffensen S.K., Fomsgaard I.S., Nicolaisen M. 2019. Maize synthesized benzoxazinoids affect the host-associated microbiome. Microbiome 7: 59. DOI: https://doi.org/10.1186/s40168....
 
55.
Kumar M., Ansari W.A., Zeyad M.T., Singh A., Chakdar H., Kumar A., Farooqi M.S., Sharma A., Srivastava S., Srivastava A.K. 2023. Core microbiota of wheat rhizosphere under upper Indo-Gangetic plains and their response to soil physicochemical properties. Frontiers in Plant Science 14: 1186162. DOI: https://doi.org/10.3389/fpls.2....
 
56.
Li Y., Wu X., Chen T., Wang W., Liu G., Zhang W., Li S., Wang M., Zhao C., Zhou H., Zhang G. 2018. Plant phenotypic traits eventually shape its microbiota: A common garden test. Frontiers in Microbiology 9: 2479. DOI: https://doi.org/10.3389/fmicb.....
 
57.
Liebisch G., Fahy E., Aoki J., Dennis E.A., Durand T., Ejsing C.S., Fedorova M., Feussner I., Griffiths W.J., Köfeler H., Merrill A.H. 2020. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. Journal of Lipid Research 61 (12): 1539–1555. DOI: https://doi.org/10.1194/jlr.S1....
 
58.
Liu J., Li W., Wu G., Ali K. 2024. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. Frontiers in Plant Science 15: 1305599. DOI: https://doi.org/10.3389/fpls.2....
 
59.
Lynch J.H., Dudareva N. 2020. Aromatic amino acids: A complex network ripe for future exploration. Trends in Plant Science 25 (4): 372–386. DOI: https://doi.org/10.1016/j.tpla....
 
60.
Lynch J.P. 2019. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytologist 223 (2): 548–564. DOI: https://doi.org/10.1111/nph.15....
 
61.
Macabuhay A., Arsova B., Walker R., Johnson A., Watt M., Roessner U. 2022. Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Trends in Plant Science 27 (1): 16–29. DOI: https://doi.org/10.1016/j.tpla....
 
62.
Maillet F., Poinsot V., André O., Puech-Pagès V., Haouy A., Gueunier M., Cromer L., Giraudet D., Formey D., Niebel A., Martinez E.A. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469 (7328): 58–63. DOI: https://doi.org/10.1038/nature....
 
63.
Mariotte P., Mehrabi Z., Bezemer T.M., De Deyn G.B., Kulmatiski A., Drigo B., Veen G.F. (Ciska), van der Heijden M.G.A., Kardol P. 2018. Plant–Soil Feedback: Bridging natural and agricultural sciences. Trends in Ecology & Evolution 33 (2): 129–142. DOI: https://doi.org/10.1016/j.tree....
 
64.
Mashiguchi K., Seto Y., Yamaguchi S. 2021. Strigolactone biosynthesis, transport, and perception. The Plant Journal 105 (2): 335–350. DOI: https://doi.org/10.1111/tpj.15....
 
65.
McAdam E.L., Hugill C., Fort S., Samain E., Cottaz S., Davies N.W., Reid J.B., Foo E. 2017. Determining the site of action of strigolactones during nodulation. Plant Physiology 175 (2): 529–542. DOI: https://doi.org/10.1104/pp.17.....
 
66.
Melotto M., Underwood W., Koczan J., Nomura K., He S.Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126 (5): 969–980. DOI: https://doi.org/10.1016/j.cell....
 
67.
Melotto M., Zhang L., Oblessuc P.R., He S.Y. 2017. Stomatal defense a decade later. Plant Physiology 174 (2): 561–571. DOI: https://doi.org/10.1104/pp.16.....
 
68.
Mishra A.K., Sudalaimuthuasari N., Hazzouri K.M., Saeed E.E., Shah I., Amiri K.M.A. 2022. Tapping into plant–microbiome interactions through the lens of multi-omics techniques. Cells 11 (20): 3254. DOI: https://doi.org/10.3390/cells1....
 
69.
Miyata K., Kozaki T., Kouzai Y., Ozawa K., Ishii K., Asamizu E., Okabe Y., Umehara Y., Miyamoto A., Kobae Y., Akiyama K. 2014. Bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiology 55 (11): 1864–1872. DOI: https://doi.org/10.1093/pcp/pc....
 
70.
Monchgesang S., Strehmel N., Schmidt S., Westphal L., Taruttis F., Muller E., Herklotz S., Neumann S., Scheel D. 2016. Natural variation of root exudates in Arabidopsis thaliana – linking metabolomic and genomic data. Scientific Reports 6: 29033. DOI: https://doi.org/10.1038/srep29....
 
71.
Moormann J., Heinemann B., Hildebrandt T.M. 2022. News about amino acid metabolism in plant–microbe interactions. Trends in Biochemical Sciences 47(12): 1010–1024. DOI: https://doi.org/10.1016/j.tibs....
 
72.
Navarro Llorens J.M., Tormo A., Martínez-García E. 2010. Stationary phase in gram-negative bacteria. FEMS Microbiology Reviews 34 (4): 476–495. DOI: https://doi.org/10.1111/j.1574....
 
73.
Nelson E.B. 2018. The seed microbiome: Origins, interactions, and impacts. Plant and Soil 422 (1–2): 7–34. DOI: https://doi.org/10.1007/s11104....
 
74.
Nguyen N.H., Trotel-Aziz P., Clément C., Jeandet P., Baillieul F., Aziz, A. 2022. Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. Planta 255 (6): 116. DOI: https://doi.org/10.1007/s00425....
 
75.
Noë R., Hammerstein P. 1994. Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism, and mating. Behavioral Ecology and Sociobiology 35 (1): 1–11. DOI: https://doi.org/10.1007/BF0016....
 
76.
Okazaki Y., Saito K. 2014. Roles of lipids as signaling molecules and mitigators during stress response in plants. The Plant Journal 79 (4): 584–596. DOI: https://doi.org/10.1111/tpj.12....
 
77.
Orozco-Mosqueda M del C., Santoyo G. 2021. Plant-microbial endophyte interactions: Scrutinizing their beneficial mechanisms from genomic explorations. Current Plant Biology 25: 100189. DOI: https://doi.org/10.1016/j.cpb.....
 
78.
Paasch B.C., He S.Y. 2021. Toward understanding microbiota homeostasis in the plant kingdom. PLoS Pathogens 17 (2): e1009472. DOI: https://doi.org/10.1371/journa....
 
79.
Pang Z., Chen J., Wang T., Gao C., Li Z., Guo L., Xu J., Cheng Y. 2021. Linking plant secondary metabolites and plant microbiomes: A review. Frontiers in Plant Science 12: 621276. DOI: https://doi.org/10.3389/fpls.2....
 
80.
Pantigoso H.A., Newberger D., Vivanco J.M. 2022. The rhizosphere microbiome: Plant–microbial interactions for resource acquisition. Journal of Applied Microbiology 132 (1): 315–331. DOI: https://doi.org/10.1111/jam.15....
 
81.
Pascale A., Proietti S., Pantelides I.S., Stringlis I.A. 2020. Modulation of the root microbiome by plant molecules: The basis for targeted disease suppression and plant growth promotion. Frontiers in Plant Science 10: 1741. DOI: https://doi.org/10.3389/fpls.2....
 
82.
Pathak A., Mandal N., Upadhyaya D.C., Joshi N. and Upadhyaya C.P. 2024. Lipid nanoparticles: a sustainable solution for crop disease management. Advances in Natural Sciences: Nanoscience and Nanotechnology 15 (3): 033001. DOI: https://doi.org/10.1088/2043-6....
 
83.
Petersen C., Round J. L. 2014. Defining dysbiosis and its influence on host immunity and disease. Cellular Microbiology 16 (7): 1024–1033. DOI: https://doi.org/10.1111/cmi.12....
 
84.
Pieterse C.M.J., de Jonge R., Berendsen R.L. 2016. The soil-borne supremacy. Trends in Plant Science 21 (3): 171–173. DOI: https://doi.org/10.1016/j.tpla....
 
85.
Rajniak J., Giehl R.F.H., Chang E., Murgia I., Von Wirén N., Sattely E.S. 2018. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature Chemical Biology 14 (5): 442–450. DOI: https://doi.org/10.1038/s41589....
 
86.
Roudaire T., Héloir M.C., Wendehenne D., Zadoroznyj A., Dubrez L., Poinssot B. 2021. Cross kingdom immunity: The role of immune receptors and downstream signaling in animal and plant cell death. Frontiers in Immunology 11: 612452. DOI: https://doi.org/10.3389/fimmu.....
 
87.
Ruelland E., Valentova O. 2016. Lipid signaling in plant development and responses to environmental stresses. Frontiers in Plant Science 7: 324. DOI: https://doi.org/10.3389/fpls.2....
 
88.
Saijo Y., Loo E.P.I., Yasuda S. 2018. Pattern recognition receptors and signaling in plant–microbe interactions. The Plant Journal 93 (4): 592–613. DOI: https://doi.org/10.1111/tpj.13....
 
89.
Sasse J., Martinoia E., Northen T. 2018. Feed your friends: do plant exudates shape the root microbiome?. Trends in Plant Science 23 (1): 25–41. DOI: https://doi.org/10.1016/j.tpla....
 
90.
Sasvari Z., Lin W., Inaba J.I., Xu K., Kovalev N., Nagy P.D. 2020. Co-opted cellular Sac1 lipid phosphatase and PI(4)P phosphoinositide are key host factors during the biogenesis of the Tombusvirus replication compartment. Journal of Virology 94 (6): e01979–19. DOI: https://doi.org/10.1128/jvi.01....
 
91.
Schmidt J.E., Gaudin A.C.M. 2017. Toward an integrated root ideotype for irrigated systems. Trends in Plant Science 22: 433–439. DOI: https://doi.org/10.1016/j.tpla....
 
92.
Shade A., Jacques M.A., Barret M. 2017. Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology 37: 15–22. DOI: https://doi.org/10.1016/j.mib.....
 
93.
Shahzad R., Khan A.L., Bilal S., Asaf S., Lee I.J. 2018 What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Frontiers in Plant Science 9: 24.DOI: https://doi.org/10.3389/fpls.2....
 
94.
Shao Q., Gao Q., Lhamo D., Zhang H., Luan S. 2020. Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis. Science Signaling 13: eaba1453. DOI: https://doi.org/10.1126/scisig....
 
95.
Shimada T.L., Betsuyaku S., Inada N., Ebine K., Fujimoto M., Uemura T., Takano Y., Fukuda H., Nakano A., Ueda T. 2019. Enrichment of phosphatidylinositol 4,5-bisphosphate in the extra-invasive hyphal membrane promotes Colletotrichum infection of Arabidopsis thaliana. Plant Cell Physiology 60: 1510–1520. DOI: https://doi.org/10.1093/pcp/pc....
 
96.
Stringlis I.A., De Jonge R., Pieterse C.M.J. 2019. The age of coumarins in plant-microbe interactions. Plant Cell Physiology 60: 1405–1419. DOI: https://doi.org/10.1093/pcp/pc....
 
97.
Stringlis I.A., Proietti S., Hickman R., Van Verk M.C., Zamioudis C., Pieterse C.M.J. 2018. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant Journal 93: 166–180. DOI: https://doi.org/10.1111/tpj.13....
 
98.
Sun Y., Qiao Z., Muchero W., Chen J.G. 2020. Lectin receptor-like kinases: the sensor and mediator at the plant cell surface. Frontiers in Plant Science 11: 596301. DOI: https://doi.org/10.3389/fpls.2....
 
99.
Teixeira P.J., Colaianni N.R., Law T.F., Conway J.M., Gilbert S., Li H., Salas-González I., Panda D., Del Risco N.M., Finkel O.M., Castrillo G. 2021. Specific modulation of the root immune system by a community of commensal bacteria. Proceedings of the National Academy of Sciences 118 (16): p.e2100678118. DOI:https://doi.org/10.1073/pnas.2....
 
100.
Thoms D., Liang Y., Haney C.H. 2021. Maintaining symbiotic homeostasis: How do plants engage with beneficial microorganisms while at the same time restricting pathogens? Molecular Plant-Microbe Interactions 34: 492–500. DOI: https://doi.org/10.1094/MPMI-1....
 
101.
Tian B., Pei Y., Huang W., Ding J., Siemann E. 2021. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. The ISME Journal 15 (7): 1919–1930. DOI: https://doi.org/10.1038/s41396....
 
102.
Toyota M., Spencer D., Sawai-Toyota S., Jiaqi W., Zhang T., Koo A.J., Howe G.A., Gilroy S. 2018. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361: 1112–1115. DOI: https://doi.org/10.1126/scienc....
 
103.
Tsai H.H., Rodríguez-Celma J., Lan P., Wu Y.C., Vélez-Bermúdez I.C., Schmidt W. 2018. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiology 177: 194–207. DOI: https://doi.org/10.1104/pp.18.....
 
104.
Tsai H.H., Schmidt W. 2017. One way. Or another? Iron uptake in plants. New Phytologist 214: 500–505. DOI: https://doi.org/10.1111/nph.14....
 
105.
Tucker C.M., Fukami T. 2014. Environmental variability counteracts priority effects to facilitate species coexistence: Evidence from nectar microbes. Proceedings of the Royal Society B: Biological Sciences 281: 2013–2637. DOI: https://doi.org/10.1098/rspb.2....
 
106.
Tünnermann L., Colou J., Näsholm T., Gratz R. 2022. To have or not to have: expression of amino acid transporters during pathogen infection. Plant Molecular Biology 109 (4): 413–425. DOI: https://doi.org/10.1007/s11103....
 
107.
Ullah A., Gao D., Wu F. 2024. Common mycorrhizal network: the predominant socialist and capitalist responses of possible plant–plant and plant–microbe interactions for sustainable agriculture. Frontiers in Microbiology 15: 1183024. DOI: https://doi.org/10.3389/fmicb.....
 
108.
Vandenkoornhuyse P., Quaiser A., Duhamel M., Le Van A., Dufresne A. 2015. The importance of the microbiome of the plant holobiont. New Phytologist 206: 1196–1206. DOI: https://doi.org/10.1111/nph.13....
 
109.
Venturi V., Keel C. 2016. Signaling in the rhizosphere. Trends in Plant Science 21: 277–287. DOI:https://doi.org/10.1016/j.tpla....
 
110.
Wang M., Cernava T. 2023. The phyllosphere microbiome. Frontiers in Plant Science 14: 1234843. DOI: https://doi.org/10.3389/fpls.2....
 
111.
Wang M., Ji Q., Liu P., Liu Y. 2022. Guarding and hijacking: stomata on the move. Trends in Plant Science 27: 489–491. DOI:https://doi.org/10.1016/j.tpla....
 
112.
Wang W., Xie Z.P., Staehelin C. 2014. Functional analysis of chimeric LysM domain receptors mediating Nod factor-induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus. Plant Journal 78: 56–69. DOI: https://doi.org/10.1111/tpj.12....
 
113.
Wang E., Schornack S., Marsh J.F., Gobbato E., Schwessinger B., Eastmond P., Schultze M., Kamoun S., Oldroyd G.E. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology 22 (23): 2242–2246. DOI: https://doi.org/10.1016/j.cub.....
 
114.
Werner G.D.A., Strassmann J.E., Ivens A.B.F., Engelmoer D.J.P., Verbruggen E., Queller D.C., Noë R., Johnson N.C., Hammerstein P., Kiers E.T. 2014. Evolution of microbial markets. Proceedings of the National Academy of Sciences of the United States of America 111: 1237–1244.DOI:https://doi.org/10.1073/pnas.1....
 
115.
Wu J., Liu Y. 2022. Stomata–pathogen interactions: over a century of research. Trends in Plant Science 27: 891–903. DOI:https://doi.org/10.1016/j.tpla....
 
116.
Xie X., Wang G., Yang L., Cheng T., Gao J., Wu Y., Xia Q. 2015. Cloning and characterization of a novel Nicotiana tabacum ABC transporter involved in shoot branching. Physiologia Plantarum 153: 103–113. DOI: https://doi.org/10.1111/ppl.12....
 
117.
Xu N., Zhao Q., Zhang Z., Zhang Q., Wang Y., Qin G., Ke M., Qiu D., Peijnenburg W.J.G.M., Lu T., Qian H. 2022. Phyllosphere microorganisms: sources, drivers, and their interactions with plant hosts. Journal of Agricultural and Food Chemistry 70: 6435–6448. DOI:https://doi.org/10.1021/acs.ja....
 
118.
Yadav B., Jogawat A., Rahman M.S., Narayan O.P. 2021. Secondary metabolites in the drought stress tolerance of crop plants: a review. Gene Reports 24: 101040. DOI: https://doi.org/10.1016/j.genr....
 
119.
Yan J., Su P., Meng X., Liu P. 2023. Phylogeny of the plant receptor-like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses. BMC Genomics 24: 1234–1248. DOI: https://doi.org/10.1186/s12864....
 
120.
Yang W., Li X., Yan H., Sun Y., Wu D., Du Y., Luo Y. 2024 Recruitment of beneficial cucumber rhizosphere microbes mediated by amino acid secretion induced by biocontrol Bacillus subtilis isolate 1JN2. Frontiers in Microbiology 15: 1379566–1379578. DOI: https://doi.org/10.3389/fmicb.....
 
121.
Yang C., Wang E., Liu J. 2022. CERK1, more than a co-receptor in plant–microbe interactions. New Phytologist 234: 1–15. DOI: https://doi.org/10.1111/nph.18....
 
122.
Yang Q., Zhao D., Liu Q. 2020. Connections Between Amino Acid Metabolisms in Plants: Lysine as an Example. Frontiers in Plant Science 11: 928. DOI: https://doi.org/10.3389/fpls.2....
 
123.
Yang Y., Pollard A.M., Höfler C., Poschet G., Wirtz M., Hell R., Sourjik V. 2015. Relation between chemotaxis and consumption of amino acids in bacteria. Molecular Microbiology 96: 1–12. DOI: https://doi.org/10.1111/mmi.13....
 
124.
Yoo H., Greene G.H., Yuan M., Xu G., Burton D., Liu L., Marqués J., Dong X. 2020. Translational Regulation of Metabolic Dynamics during Effector-Triggered Immunity. Molecular Plant 13: 1–15. DOI: https://doi.org/10.1016/j.molp....
 
125.
Yu P., He X., Baer M., Beirinckx S., Tian T., Moya Y.A., Zhang X., Deichmann M., Frey F.P., Bresgen V., Li C. 2021. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants 7 (4): 481–499. DOI: https://doi.org/10.1038/s41477....
 
126.
Yu K., Pieterse C.M.J., Bakker P.A.H.M., Berendsen R.L. 2019. Beneficial microbes going underground of root immunity. Plant Cell and Environment 42: 1–12. DOI: https://doi.org/10.1111/pce.13....
 
127.
Zgadzaj R., Garrido-Oter R., Jensen D.B., Koprivova A., Schulze-Lefert P., Radutoiu S. 2016. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 113: 1–6. DOI: https://doi.org/10.1073/pnas.1....
 
128.
Zhang C., He J., Dai H., Wang G., Zhang X., Wang C., Shi J., Chen X., Wang D., Wang E. 2021. Discriminating symbiosis and immunity signals by receptor competition in rice. Proceedings of the National Academy of Sciences of the United States of America 118: e2023738118. DOI: https://doi.org/10.1073/pnas.2....
 
129.
Zhang Y., Cao B., Pan Y., Tao S., Zhang N. 2023. Metabolite-mediated responses of phyllosphere microbiota to rust infection in two malus species. Microbiology Spectrum 11: e03831–22. DOI: https://doi.org/10.1128/spectr....
 
130.
Zhang M., Kong X. 2022. How plants discern friends from foes. Trends in Plant Science 27 (2): 107–109. DOI: https://doi.org/10.1016/j.tpla....
 
131.
Zhao C., Pratelli R., Yu S., Shelley B., Collakova E., Pilot G. 2021. Detailed characterization of the UMAMIT proteins provides insight into their evolution, amino acid transport properties, and role in the plant. Journal of Experimental Botany 72: 1–12. DOI: https://doi.org/10.1093/jxb/er....
 
132.
Zhao J. 2015. Phospholipase D and phosphatidic acid in plant defence response: From protein-protein and lipid-protein interactions to hormone signalling. Journal of Experimental Botany 66: 1–12. DOI: https://doi.org/10.1093/jxb/er....
 
133.
Zhou F., Emonet A., Dénervaud Tendon V., Marhavy P., Wu D., Lahaye T., Geldner N. 2020. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell 180: 1–15. DOI: https://doi.org/10.1016/j.cell....
 
134.
Zhu Q., Feng Y., Xue J., Chen P., Zhang A., Yu Y. 2023 Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. Plants 12: 427–443. DOI: https://doi.org/10.3390/plants....
 
135.
Zipfel C. 2014. Plant pattern-recognition receptors. Trends in Immunology 35 (7): 345–351. DOI: https://doi.org/10.1016/j.it.2....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top