We report the first case of chafer beetle [Anisoplia austriaca
(Herbst 1783)] mortality caused by
Actinomucor elegans
var.
elegans
in wheat fields of the Kurdistan province, Iran. For three years, dead larvae of
Anisoplia austriaca
were collected from wheat fields of
the Kurdistan province. Similar isolates of a fast-growing fungus were recovered from all samples. The fungal isolates were identified
as
A. elegans
var.
elegans
based on morphological and cultural characteristics. The identity of the species was further confirmed using
sequence data of the ITS (Internal Transcribed Spacer) region of ribosomal DNA. Koch’s postulates were fulfilled by the inoculation
of the larvae of
A. austriaca
and
Galleria mellonella
(Linnaeus, 1758) (as the model insect) using the spore suspension of
A. elegans
var.
elegans. The viability of sporangiospores was evaluated using a spore dilution technique on germination medium.
The results on the
pathogenicity (100% mortality in
A. austriaca
larvae) and viability tests (germination: 95.45%) demonstrated that
A. elegans
var.
elegans
can be considered as a potential biocontrol agent against the chafer beetle. Field experiments are still required to evaluate the capacity
of
A. elegans
as a biological control agent.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES(31)
1.
Arzanlou M., Groenewald J.Z., Gams W., Braun U., Shin H.D., Crous P.W. 2007. Phylogenetic and morphotaxonomic revision of Ramichloridium and allied genera. Studies in Mycology 58: 57–93.
Cotter G., Doyle S., Kavanagh K. 2000. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunology & Medical Microbiology 27 (2): 163–169.
Degawa Y., Gams W. 2004. A new species of Mortierella, and an associated sporangiiferous mycoparasite in a new genus, Nothadelphia. Studies in Mycology 50 (2): 567–572.
Han B.Z., Ma Y., Rombouts F.M., Nout M.J.R. 2003. Effects of temperature and relative humidity on growth and enzyme production by Actinomucor elegant and Rhizopus oligosporus during sufu pehtze preparation. Food Chemistry 81 (1): 27–34.
Herlinda S. 2010. Spore density and viability of entomopathogenic fungal isolates from Indonesia, and their virulence against Aphis gossypiiGlover (Homoptera: Aphididae). Trop Life Sciences Results 21 (1): 11–19.
Hoffmann K., Pawłowska J., Walther G., Wrzosek M., de Hoog G.S., Benny G.L., Kirk P.M., Voigt K. 2013. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia 30: 57–76.
Jameson M., Mico E., Galante E. 2007. Evolution and phylogeny of the scarab subtribe Anisopliina (Coleoptera: Scarabaeidae: Rutelinae: Anomalini). Systematic Entomology 32 (3): 429–449.
Khan Z.U., Ahmad S., Mokaddas E., Chandy R., Cano J., Guarro J. 2008. Actinomucor elegant var. Kuwaitiensis isolated from the wound of a diabetic patient. Antonie Van Leeuwenhoek 94 (3): 343–352.
Mahmud A., Lee R., Munfus-McCray D., Kwiatkowski N., Subramanian A., Neofytos D., Carroll K., Zhang S.X. 2012. Actinomucor elegant as an emerging cause of Mucormycosis. Journal of Clinical Microbiology 50 (3): 1092–1095.
Milner R.J., Huppatz R J., Swaris S.C. 1991. A new method for assessment of germination of Metarhizium conidia. Journal of Invertebrate Pathology 57 (1): 121–123.
Möller E.M., Bahnweg G., Geiger H.H. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Results 20 (22): 6115–6116.
Phalip V., Hatsch D., Laugel B., Jeltsch J.M. 2006. An overview of fungal community diversity in diseased hop plantations. FEMS Microbiology Ecology 56 (2): 321–329.
Rehner S.A., Samuels G.J. 1994. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98 (6): 625–634.
Soetopo D. 2004. Efficacy of selected Beauveria bassiana(Bals.) Vuill. isolates in combination with a resistant cotton variety (PSB-Ct 9) against the cotton bollworm, Helicoverpa armigera(Hübner) (Lepidoptera: Noctuidae). Ph.D. thesis, University of the Philippines Los Banos, Philippines.
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28 (10): 2731–2739.
Vilgalys R., Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 (8): 4238–4246.
Walther G., Pawłowska J., Alastruey-Izquierdo A., Wrzosek M., Rodriguez-Tudela J.L., Dolatabadi S., Chakrabarti A., de Hoog G.S. 2013. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia 30: 11–47.
White T.J., Bruns T.D., Lee S.B., Taylor J.W. 1990. Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: “PCR-Protocols and Applications, a Laboratory Manual” (N. Innis, D. Gelfand, J. Sninsky, T.C. White, eds.). Academic Press, New York, USA.
Zheng R.Y., Liu X.Y. 2005. Actinomucor elegant var. meitauzae, the correct name for A. taiwanensis and Mucor meitauzae(Mucorales, Zygomycota). Nova Hedwigia 80 (3–4): 419–431.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.