ORIGINAL ARTICLE
Effectiveness of nanoatrazine in post-emergent control of the tolerant weed Digitaria insularis
 
More details
Hide details
1
Agronomy Department, State University of Londrina, Londrina, Brazil
2
Department of Environmental Engineering, São Paulo State University (UNESP), São Paulo, Brazil
3
Department of Animal and Plant Biology, Londrina State University, Londrina, Brazil
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Giliardi Dalazen   

Agronomy Department, State University of Londrina, Celso Garcia Cid, 86057970, Londrina, Brazil
Submission date: 2019-10-02
Acceptance date: 2019-11-27
Online publication date: 2020-06-18
 
Journal of Plant Protection Research 2020;60(2):185–192
 
KEYWORDS
TOPICS
ABSTRACT
Digitaria insularis (sourgrass) is a monocotyledon weed of difficult control and high invasive behavior. Atrazine is widely applied in the Americas to control weeds in maize culture, but its efficiency against D. insularis is limited. The incorporation of atrazine into poly(epsilon-caprolactone) nanocapsules increased the herbicidal activity against susceptible weeds; however, the potential of this nanoformulation to control atrazine-tolerant weeds including D. insularis has not yet been tested. Here, we evaluated the post-emergent herbicidal activity of nanoatrazine against D. insularis plants during initial developmental stages. The study was carried out in a greenhouse, using pots filled with clay soil. Plants with two or four expanded leaves were treated with conventional or nanoencapsulated atrazine at 50 or 100% of the recommended dosage (1,000 or 2,000 g ∙ ha−1), followed by the evaluation of physiological, growth, and control parameters of the plants. Compared with conventional herbicide, both dosages of nanoatrazine induced greater and faster inhibition of D. insularis photosystem II activity at both developmental stages. Atrazine nanoencapsulation also improved the control of D. insularis plants, especially in the stage with two expanded leaves. In addition, nanoatrazine led to higher decreases of dry weight of fourleaved plants than atrazine. The use of the half-dosage of nanoatrazine was equally or more efficient in affecting most of the evaluated parameters than the conventional formulation at full dosage. Overall, these results suggest that the nanoencapsulation of atrazine potentiated its post-emergent herbicidal activity against D. insularis plants at initial developmental stages, favoring the control of this atrazine-tolerant weed.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
FUNDING
The authors wish to thank São Paulo Research Foundation (FAPESP, Grant Number 2017/21004-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Number 306583/2017-8) for financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. No conflicts of interest have been declared.
 
REFERENCES (30)
1.
Anton N., Benoit J.P., Saulnier P. 2008. Design and production of nanoparticles formulated from nano-emulsion templates: a review. Journal of Controlled Release 128 (3): 185–199. DOI: https://doi.org/10.1016/j.jcon....
 
2.
Baker N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89–113. DOI: https://doi.org/10.1146/annure....
 
3.
Bombo A.B., Pereira A.E.S., Lusa M.G., Oliveira E.M., Oliveira J.L., Campos E.V.R., Jesus M.B., Oliveira H.C., Fraceto L.F., Mayer J.L.S. 2019. A mechanistic view of interactions of a nanoherbicide with target organism. Journal of Agricultural and Food Chemistry 67 (16): 4453–4462. DOI: https://doi.org/10.1021/acs.ja....
 
4.
Catâneo A.C., Chamma K.L., Ferreira L.C., Déstro G.F.G., Carvalho J.C., Novelli E.L.B. 2002. Glutathione S-transferase activity in acetochlor, atrazine and oxyfluorfen metabolization in maize (Zea mays L.), sorghum (Sorghum bicolor L.) and wheat (Triticum aestivum L.) (Poaceae). Acta Scientiarum 24 (2): 619–623. DOI: http://dx.doi.org/10.4025/acta....
 
5.
Dan H.A., Dan L.G.M., Barroso A.L.L., Oliveira Junior R.S., Oliveira Neto A.M. 2011. Supression imposed by atrazine to digitaria horizontalis as a function of its stage of development. Revista Caatinga 24 (1): 27–33.
 
6.
Gazziero D., Adegas F., Silva A., Concenço G. 2019. Estimating yield losses in soybean due to sourgrass interference. Planta Daninha 37: e019190835. DOI: http://dx.doi.org/10.1590/s010....
 
7.
Gemelli A., Oliveira Junior R.S., Constantin J., Braz G.B.P., Jumes T.M.C., Gheno E.A.A., Rios F.A., Franchini L.H.M. 2013. Strategies to control of sourgrass (Digitaria insularis) glyphosate resistant in the out-of-season corn crop (e.g. in Portuguese). Revista Brasileira de Herbicidas 12 (2): 162–170. DOI: https://doi.org/10.7824/rbh.v1....
 
8.
Gilo E.G., Mendonça C.G., Espírito Santo T.L., Teodoro P.E. 2016. Alternatives for chemical management of sourgrass. Bioscience Journal 32 (4): 881–889. DOI: https://doi.org/10.14393/BJ-v3....
 
9.
Grillo R., Santos N.Z.P., Maruyama C.R., Rosa A.H., Lima R., Fraceto L.F. 2012. Poly (ɛ-caprolactone) nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. Journal of Hazardous Materials 231: 1–9. DOI: https://doi.org/10.1016/j.jhaz....
 
10.
Iavicoli I., Leso V., Beezhold D.H., Shvedova A.A. 2017. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology 329: 96–111. DOI: https://doi.org/10.1016/j.taap....
 
11.
Kah M., Kookana R.S., Gogos A., Bucheli T.D. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology 13 (8): 677–684. DOI: https://doi.org/10.1038/s41565....
 
12.
Lopez-Ovejero R.F., Takano H.K., Nicolai M., Ferreira A., Melo M.S.C., Cavenaghi A.L., Cristoffoleti P.J., Oliveira R.S. 2017. Frequency and dispersal of glyphosate-resistant sourgrass (Digitaria insularis) populations across Brazilian agricultural production areas. Weed Science 65 (2): 285–294. DOI: https://doi.org/10.1017/wsc.20....
 
13.
Machado A.F.L., Meira R.M.S., Ferreira L.R., Ferreira F.A., Tuffi Santos L.D., Fialho C.M.T., Machado M.S. 2008. Anatomical characterization of the leaf, stem and rhizome of Digitaria insularis (e.g. in Portuguese). Planta Daninha 26 (1): 1–8. DOI: http://dx.doi.org/10.1590/S010....
 
14.
Marques R.P., Rodella R.A., Martins D. 2011. Chemical control in post-emergence of species of brachiaria in three vegetative stages (e.g. in Portuguese). Arquivos do Instituto Biológico 78 (3): 409–416.
 
15.
Melo M.S.C., Rocha L.J.F.N., Brunharo C.A.C.G., Nicolai M., Tornisiello V.L., Nissen S.J., Cristoffoleti P.J. 2019. Sourgrass resistance mechanism to the herbicide glyphosate. Planta Daninha 37: 1–12. DOI: http://dx.doi.org/10.1590/s010....
 
16.
Melo M.S.C., Rocha L.J.F.N., Brunharo C.A.D.C.G., Silva D.C.P., Nicolai M., Christoffoleti P.J. 2017. Chemical control alternatives for glyphosate-resistant sourgrass using herbicides indicated for corn and cotton crop (e.g. in Portuguese). Revista Brasileira de Herbicidas 16 (3): 206–215. DOI: https://doi.org/10.7824/rbh.v1....
 
17.
Monquero P.A., Christoffoleti P.J., Osuna M.D., Prado R.A. 2004. Absorption, translocation and metabolism of glyphosate by plants tolerant and susceptible to this herbicide (e.g. in Portuguese). Planta Daninha 22 (3): 445–451. DOI: http://dx.doi.org/10.1590/S010....
 
18.
Oliveira H.C., Stolf-Moreira R., Martinez C.B.R., Grillo R., Jesus M.B. Fraceto L.F. 2015a. Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One 10 (7): 1–12. DOI: https://doi.org/10.1371/journa....
 
19.
Oliveira H.C., Stolf-Moreira R., Martinez C.B., Sousa G.F.M., Grillo R., Jesus M.B., Fraceto L.F. 2015b. Evaluation of the side effects of poly (epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Frontiers in Chemistry 3 (61): 1–9. DOI: https://doi.org/10.3389/fchem.....
 
20.
Pascoli M., Lopes-Oliveira P.J., Fraceto L.F., Seabra A.B., Oliveira H.C. 2018. State of the art of polymeric nanoparticles as carrier systems with agricultural applications. Energy, Ecology and Environment 3 (3): 137–148. DOI: https://doi.org/10.1007/s40974....
 
21.
Preisler A.C., Pereira A.E.S., Campos E.V., Dalazen G., Fraceto F., Oliveira H.C. 2019. Atrazine nanoencapsulation improves pre‐emergence herbicidal activity against Bidens pilosa without enhancing long‐term residual effect on Glycine max. Pest Management Science (2019): 1–9. DOI: https://doi.org/10.1002/ps.548....
 
22.
Recker R.A., Mitchell P.D., Stoltenberg D.E., Lauer J.G., Davis V.M. 2015. Late-season weed escape survey reveals discontinued atrazine use associated with greater abundance of broadleaf weeds. Weed Technology 29 (3): 451–463. DOI: https://doi.org/10.1614/WT-D-1....
 
23.
Shaner D.L. 2014. Herbicide Handbook. 10th ed. Weed Science Society of America, Lawrence, USA, 513 pp.
 
24.
Shimabukuro R.H., Swanson H.R., Walsh W.C. 1970. Glutathione conjugation atrazine detoxication mechanism in corn. Plant Physiology 46 (1): 103–107. DOI: https://doi.org/10.1104/pp.46.....
 
25.
Silva G.D., Gazziero D.L.P., Adegas F.S., Mendes R.R., Sanches A.K.S., Silva V.F.V. 2018. Controle de capim-amargoso entouceirado. p. 4. In: II Simpósio De Produção Agropecuária Sustentável (24–26 October, Bandeirantes, Brasil). UENP, Bandeirantes, Brasil. Available on: http://www.alice.cnptia.embrap.... [Accessed: 27 March 2020].
 
26.
Silva W.T., Karam D., Vargas I., Silva A.F. 2017. Alternatives of chemical control for sourgrass (Digitaria insularis) on maize crop (e.g. in Portuguese). Revista Brasileira de Milho e Sorgo 16 (3): 578–586. DOI: https://doi.org/10.18512/1980-....
 
27.
Singh S., Kumar V., Chauhan A., Datta S., Wani A.B., Singh N., Singh J. 2018. Toxicity, degradation and analysis of the herbicide atrazine. Environment Chemistry Letters 16: 211–237. DOI: https://doi.org/10.1007/s10311....
 
28.
Sousa G.F., Gomes D.G., Campos E.V., Oliveira J.L., Fraceto L.F., Stolf-Moreira R., Oliveira H.C. 2018. Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Frontiers in Environmental Science 6 (12): 1–6. DOI: 10.3389/fenvs.2018.00012.
 
29.
Walker G.W., Kookana R.S., Smith N.E., Kah M., Doolette C.L., Lovell W., Anderson D.J., Turney T.W., Navarro D.A. 2018. Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. Journal of Agricultural and Food Chemistry 66 (26): 6480–6486. DOI: https://doi.org/10.1021/acs.ja....
 
30.
Yu Q., Powles S. 2014. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiology 166 (3): 1106–1118. DOI: https://doi.org/10.1104/pp.114....
 
eISSN:1899-007X
ISSN:1427-4345