ORIGINAL ARTICLE
Molecular basis of blackgrass (Alopecurus myosuroides Huds.) resistance to sulfonylurea herbicides
 
More details
Hide details
1
Warsaw University of Life Science – SGGW, Faculty of Horticulture, Department of Basic Research in Horticulture Nowoursynowska 159, 02-776 Warsaw, Poland
2
Institute of Plant Protection – National Research Institute, Department of Weed Science and Plant Protection Techniques Węgorka 20, 60-318 Poznań, Poland
CORRESPONDING AUTHOR
Michał Krysiak
Warsaw University of Life Science – SGGW, Faculty of Horticulture, Department of Basic Research in Horticulture Nowoursynowska 159, 02-776 Warsaw, Poland
 
Journal of Plant Protection Research 2011;51(2):130–133
KEYWORDS
TOPICS
ABSTRACT
Blackgrass biotype resistant to the mesosulfuron + iodosulfuron mixture has been found in Poland and was investigated in this study. Seedlings that survived double-dosed herbicide treatment were submitted to molecular analysis in order to explain the mechanism of resistance. Domains A and B of the acetolactate synthase gene were amplified by PCR and then sequenced. Biotypes which were both resistant and susceptible to mesosulfuron+iodosulfuron were analyzed. The comparison of the obtained sequences was made on a nucleotide and aminoacid level. The comparison revealed a substitution of proline codon to histidine codon in position 197 in each resistant plant. Mutation Pro197His is the basis of the target site resistance of A. myosuroides to sulfonylureas. There were no other mutations in als gene of the biotype that might modify the level of resistance to these herbicides.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (21)
1.
Burnet M.W.M., Christopher J.T., Holtum J.A.M., Powles SB. 1994. Identification of two mechanisms of sulfonylurea resistance within one population of rigid ryegrass (Lolium rigidum) using a selective germination medium. Weed Sci. 42 (3): 468–473.
 
2.
Délye C., Boucansaud K. 2008. A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Res. 48 (2): 97–101.
 
3.
Délye C., Matejicek A., Gasquez J. 2002. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds.) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58 (5): 474–478.
 
4.
Domaradzki K, Rola H. 2006. Szkodliwość i możliwości zwalczania Alopecurus myosuroides w warunkach Śląska Opolskiego. Prog. Plant Protection/Post. Ochr. Roślin 46 (1): 232–239.
 
5.
Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.
 
6.
Gressel J. 2002. Resistance to inhibitors of acetolactate synthase, p. 155–161. In: „Molecular Biology of Weed Control” (J. Gressel, ed.). Taylor & Francis, London and New York, 504 pp.
 
7.
International Survey of Herbicide Resistant Weeds. 2010a. Online: www.weedscience.org, accessed 4th May 2010.
 
8.
International Survey of Herbicide Resistant Weeds. 2010b. Online: http://www.weedscience.org/Cas..., accessed 4th May 2010.
 
9.
Kaundun S.S., Windass J.D. 2006. Derived cleaved amplified polymorphic sequence, a simple method to detect a key point mutation conferring acetyl CoA carboxylase inhibitor herbicide resistance in grass weeds. Weed Res. 46 (1): 34–39.
 
10.
Krysiak M., Basiewicz M., Gawroński S.W., Kierzek R., Adamczewski K. 2007. Molekularne podstawy odporności miotły zbożowej (Apera spica-venti L.) na herbicydy sulfonylomocznikowe. Prog. Plant Protection/Post. Ochr. Roślin 47 (3): 164–168.
 
11.
Krysiak M., Gawronski S.W., Adamczewski K., Kierzek R. 2009. Mutacja kodonu Pro197 genu als powoduje odporność miotły zbożowej (Apera spica-venti L.) na herbicydy sulfonylomocznikowe. 49. Sesja Inst. Ochr. Roślin – PIB. Streszczenia. Poznań, 19–20 lutego 2009, p. 114.
 
12.
Moss S.R. 1987. Competition between Blackgrass (Alopecurus myosuroides) and winter wheat. The BCPC Conference – Weeds 2., Brighton Metropole, UK, 16–19th November: 367–374.
 
13.
Park K.W., Mallory-Smith C.A. 2004. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res. 44 (2): 71–77.
 
14.
Ralser M., Querfurth R., Warnatz H.J., Lehrach H., Yaspo M.L.,Krobitsh S. 2006. An efficient and economic enhancer mix for PCR. Biochem. Biophys. Res. Commun. 347 (3): 747–751.
 
15.
Rola H., Marczewska K. 2002. Biotypy chwastów odporne na chlorosulfuron w rejonie Wrocławia (Weeds resistant to chlorosulfuron in environs of Wroclaw). Prog. Plant Protection/Post. Ochr. Roślin 42 (2): 575–577.
 
16.
Ryan G.F. 1970. Resistance to common groundsel to simazine and atrazine. Weed Sci. 18 (5): 614–616.
 
17.
Siminszky B. 2006. Plant cytochrome P450-mediated herbicide metabolism. Phytochem. Rev. 5 (2): 445–458.
 
18.
Tranel P.J., Wright T.R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50 (6): 700–712.
 
19.
Tranel P.J., Wright T.R., Heap I.M. 2010. ALS mutations from herbicide-resistant weeds. http://www.weedscience.com, accessed 4th May 2010.Uchino A., Ogata S., Kohara H., Yoshida S., Yoshioka T., Watanabe H. 2007. Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurearesistant biotypes of Schoenoplectus juncoides. Weed Bio. Manage. 7 (2): 89–96.
 
20.
Yu Q., Han H., Powles S.B. 2008. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manage. Sci. 64 (12): 1229–1236.
 
21.
Yu Q., Nelson J.K, Zheng M.Q., Jackson M., Powles S.B. 2007. Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manage. Sci. 63 (9): 918–927.
 
eISSN:1899-007X
ISSN:1427-4345